一种磁流变弹性体模型参数识别新方法及其应用研究

王鹏1,2,杨绍普1,刘永强1,董旭峰3,赵义伟1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 189-198.

PDF(2903 KB)
PDF(2903 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 189-198.
论文

一种磁流变弹性体模型参数识别新方法及其应用研究

  • 王鹏1,2,杨绍普1,刘永强1,董旭峰3,赵义伟1,2
作者信息 +

A new method for parametric identification of MRE model and its application

  • WANG Peng1,2, YANG Shaopu1, LIU Yongqiang1, DONG Xufeng3, ZHAO Yiwei1,2
Author information +
文章历史 +

摘要

为了定量描述不同应变幅值、频率和磁场下磁流变弹性体(MRE)的力学特性,提出了一种新的参数识别方法。采用Bouc-Wen模型表征MRE的非线性滞回特性,通过试验数据验证了模型有效性,基于对模型参数与应变幅值、频率和磁场的耦合关系分析,提出了多工况参数识别方法。将仿真值与试验值之间的误差作为目标函数,利用GA-PSO混合算法对Bouc-Wen模型参数进行识别,选用多种工况的试验数据验证识别结果。结果表明,多工况参数识别方法得到的模型参数表达式在较宽的应变幅值、频率和磁场范围内是准确的,能够反映MRE的力学特性。识别和非识别工况下MRE滞回曲线的仿真值与试验值吻合率高于93%,证明了多工况参数识别方法的有效性,该方法也可用于其他模型的参数识别。

Abstract

To quantitatively characterize the mechanical properties of MRE under varying excitation conditions, a new parameter identification method was proposed. Using MRE test data, it was verified that Bouc-Wen model can describe MRE hysteresis characteristics. A parameter identification method under multi-loading conditions was proposed, with analyzing the coupling relationship between the parameters and strain amplitude, frequency, and magnetic field. Taking the error of simulation and experimental data as the objective function, the parameters were identified by using the GA-PSO hybrid algorithm, the identification results were verified using test data. The results show that the expression of model parameters obtained from the identification method is accurate in a wide range of strain amplitude, frequency, and magnetic field, can reflect the mechanical characteristics of MRE. The fitness values of the numerical results and test results under identified and non-identified conditions exceed 93%, showcasing the effectiveness of the parameter identification method.

关键词

磁流变弹性体 / 性能试验 / 滞回特性 / Bouc-Wen模型 / 参数识别方法

Key words

magnetorheological elastomers
/ performance test / hysteresis characteristic / Bouc-Wen model / parameters identification method

引用本文

导出引用
王鹏1,2,杨绍普1,刘永强1,董旭峰3,赵义伟1,2. 一种磁流变弹性体模型参数识别新方法及其应用研究[J]. 振动与冲击, 2022, 41(11): 189-198
WANG Peng1,2, YANG Shaopu1, LIU Yongqiang1, DONG Xufeng3, ZHAO Yiwei1,2. A new method for parametric identification of MRE model and its application[J]. Journal of Vibration and Shock, 2022, 41(11): 189-198

参考文献

[1] 马伟佳,黄学功,汪辉兴,等.磁流变弹性体隔振器隔振控制与实验研究[J].振动与冲击,2020,39(8):118-122.
MA Wei-jia, HUANG Xue-gong, WANG Hui-xing, et al. Vibration isolation control and an experimental study of magnetorheological elastomer isolators [J]. Journal of vibration and shock, 2020, 39(8): 118-122.
[2] 毕凤荣,曹荣康,Xu Wang,等.基于MRE的变刚度变阻尼减振器设计研究[J].振动与冲击, 2019, 38(3): 192-198.
BI Feng-rong, CAO Rong-kang, XU Wang, et al. Variable stiffness and damping shock absorber design based on MRE [J]. Journal of vibration and shock, 2019, 38(3): 192-198.
[3] 朱秘,余淼,浮洁,等.基于磁流变弹性体的缓冲装置设计及其冲击响应特性研究[J].振动与冲击,2017,36(4):172-177.
ZHU Mi, YU Miao, FU Jie, et al. An experimental study on shock response characteristics of magnetorheological elastomer-based buffer [J]. Journal of vibration and shock, 2017, 36(4): 172-177.
[4] Jolly M R, Carlson J D, Muoz B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures, 1996, 5(5): 607-614(8).
[5] Davis, L. Model of magnetorheological elastomers[J]. Journal of Applied Physics, 1999, 85(6): 3348-3351.
[6] Chen L, Gong X L, Li W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials and Structures, 2007, 16(6): 2645-2650(6).
[7] Zhang X , Peng S , Wen W , et al. Analysis and fabrication of patterned magnetorheological elastomers[J]. Smart Materials and Structures, 2008, 17(4): 45001-45005.
[8] Li W H, Zhou Y, Tian T F. Viscoelastic properties of MR elastomers under harmonic loading[J]. Rheologica acta, 2010, 49(7): 733-740.
[9] Kari L, Blom P. Magneto-sensitive rubber in a noise reduction context-exploring the potential[J]. Plastics, rubber and composites, 2005, 34(8): 365-371.
[10] Dominguez A, Sedaghati R, Stiharu I. Modelling the hysteresis phenomenon of magnetorheological dampers[J]. Smart Materials and Structures, 2004, 13(6): 1351.
[11] Yang J, Du H, Li W, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator[J]. Smart Materials and Structures, 2013, 22(11): 117001.
[12] 赵义伟,刘永强,杨绍普,等.一种描述减振器滞回特性的Bouc-Wen改进模型[J]. 工程科学学报, 2020, 42(10):1352-1361.
ZHAO Yi-wei, LIU Yong-qiang, YANG Shao-pu, et al. An improved Bouc-Wen model for describing hysteretic characteristics of shock absorbers[J]. Chinese Journal of Engineering, 2020, 42(10): 1352-1361.
[13] Wang Q, Dong X, Li L, et al. A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies[J]. Smart Materials and Structures, 2017, 26(6): 065010.
[14] Wang H X, Gong X S, Pan F, et al. Experimental investigations on the dynamic behaviour of O-type wire-cable vibration isolators[J]. Shock and Vibration, 2015: 1-12.
[15] Rodriguez A, Iwata N, Ikhouane F, et al. Modeling and identification of a large-scale magnetorheological fluid damper[C]//Advances in Science and Technology. Trans Tech Publications Ltd, 2008, 56: 374-379.
[16] 刘永强,杨绍普,廖英英,等.基于遗传算法的磁流变阻尼器Bouc-Wen模型参数辨识[J].振动与冲击,2011,30(7):261-265.
LIU Yong-qiang, YANG Shao-pu,LIAO Ying-ying, et al.Parameter identification of Bouc-wen model for MR damper based on genetic algorithm[J]. Journal of vibration and shock, 2011, 30(7): 261-265.
[17] Giuclea M, Sireteanu T, D Stancioiu, et al. Model parameter identification for vehicle vibration control with magnetorheological dampers using computational intelligence methods[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, 2004, 218(7): 569-581.
[18] Charalampakis A E, Koumousis V K. Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm[J]. Journal of Sound and Vibration, 2008, 314(3-5): 571-585.
[19] Bi K , Qiu T . An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method[J]. Chinese Journal of Chemical Engineering, 2019, 27: 1888-1894
[20] Garg H. A hybrid PSO-GA algorithm for constrained optimization problems[J]. Applied Mathematics and Computation, 2016, 274: 292-305.
[21] Yongqiang, Liu, Shaopu, et al. A quantizing method for determination of controlled damping parameters of magnetorheological damper models[J]. Journal of intelligent material systems and structures, 2011, 22(18): 2127-2136.
[22] Xia P Q, Yue H L. Performance of Magnetorheological Damper with its Application to Vibration Control[J]. Journal of Aerospace Power, 2004, 19: 305-309.

PDF(2903 KB)

313

Accesses

0

Citation

Detail

段落导航
相关文章

/