基于压缩感知的旋转声源多普勒效应消除方法

张小正,李银龙,张永斌,毕传兴

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 245-251.

PDF(3356 KB)
PDF(3356 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 245-251.
论文

基于压缩感知的旋转声源多普勒效应消除方法

  • 张小正,李银龙,张永斌,毕传兴
作者信息 +

Doppler effect elimination method of rotating sound source based on compressed sensing

  • ZHANG Xiaozheng, LI Yinlong, ZHANG Yongbin, BI Chuanxing
Author information +
文章历史 +

摘要

消除旋转声源的多普勒效应是监测旋转机械工作状态和定位旋转声源的前提。当前用于消除旋转声源多普勒效应的方法分为频域和时域两种,但是这两种方法都需要在周向均匀布置大量传声器,这不仅增加了测量成本,而且增加了测量工作量。针对上述问题本文提出了一种基于压缩感知的多普勒效应消除方法,该方法通过在周向随机布置少量传声器完成周向模态幅值的重构,并根据静止柱坐标系与随声源同步旋转的旋转柱坐标系之间的相对运动关系完成多普勒效应的消除。数值仿真和实验研究都表明采用较少传声器随机布置的方法同基于采样定理均匀布置传声器的方法在消除多普勒效应的效果上基本一致,且本文所提方法可有效降低测量成本和测量工作量。

Abstract

Eliminating the Doppler effect of rotating sound sources is the prerequisite for monitoring the working status of rotating machinery and locating the rotating sound sources. The current methods used to eliminate the Doppler effect of rotating sound sources include the frequency-domain method and the time-domain method. However, these methods need to arrange a lot of microphones in the circumferential direction and meet the law of uniform distribution, which not only increases the economic cost, but also raise the measurement loads. In order to solve the deficiencies of those methods, this paper proposes a de-Dopplerization method based on compressed sensing. It achieves the reconstruction of the mode amplitude by randomly arranging fewer microphones in the circumferential direction. Then, the Doppler effect is eliminated according to the relationship of relative motion between the stationary cylindrical coordinate system and the rotating cylindrical coordinate system that rotates synchronously with the sound sources. Numerical simulation and experiments demonstrate that the method of randomly arranging fewer microphones is basically similar to the method of evenly arranging the microphones based on the sampling theorem in eliminating the Doppler effect, and the proposed method can decrease both the measurement cost and loads.

关键词

旋转声源 / 多普勒效应 / 压缩感知 旋转声源 / 多普勒效应 / 压缩感知

Key words

rotating sound sources / Doppler effect / compressed sensing

引用本文

导出引用
张小正,李银龙,张永斌,毕传兴. 基于压缩感知的旋转声源多普勒效应消除方法[J]. 振动与冲击, 2022, 41(11): 245-251
ZHANG Xiaozheng, LI Yinlong, ZHANG Yongbin, BI Chuanxing. Doppler effect elimination method of rotating sound source based on compressed sensing[J]. Journal of Vibration and Shock, 2022, 41(11): 245-251

参考文献

[1] LOWIS C R, JOSEPH P. Determining the strength of rotating broadband sources in ducts by inverse methods [J]. Journal of Sound and Vibration, 2006, 295(3-5): 614–632.
[2] 张海滨,蒋伟康,闫肖杰. 运行列车辐射噪声源定位与声级定量分析研究[J]. 振动与冲击,2015,34(11):88-92.
ZHANG Hai-bin, JIANG Wei-kang, YAN Xiao-jie. Running train noise source locating and quantitive prediction of sound pressure level [J]. Journal of vibration and shock, 2015, 34(11): 88-92.
[3] 褚志刚,杨洋,王卫东,等. 基于波束形成方法的货车车外加速噪声声源识别[J].振动与冲击,2012,31(07):66-70.
CHU Zhi-gang, YANG Yang, WANG Wei-dong, et al. Identification of truck noise sources under passby condition based on wave beamforming method [J]. Journal of vibration and shock, 2012, 31(07): 66-70.
[4] PANNERT W, MAIER C. Rotating beamforming – motion-compensation in the frequency domain and application of high-resolution beamforming algorithms [J]. Journal of Sound and Vibration, 2014, 333(7):1899–1922.
[5] HEO Y H, IH J G, BODEN H. In-duct identification of a rotating sound source with high spatial resolution [J]. Journal of Sound and Vibration, 2015, 357:51-73.
[6] DOUGHERTY R P, WALKER B E. Virtual rotating microphone imaging of broadband fan noise [C]// Proceedings of 15th AIAA/CEAS Aeroacoustics Conference. Miami: AIAA, 2009. 1-14.
[7] HEROLD G, SARRAD E. Microphone array method for the characterization of rotating sound sources in axial fans [J]. Noise Control Engineering Journal, 2015, 63(6):546–551.
[8] MA W, BAO H, ZHANG C, et al. Beamforming of phased microphone array for rotating sound source localization [J]. Journal of Sound and Vibration, 2019, 467:1-17.
[9] MA W, ZHANG C. A frequency-domain beamforming for rotating sound source identification [J]. The Journal of the Acoustical Society of America, 2020, 148(3):1602-1613.
[10] CANDES E, TAO T. Decoding by linear programming [J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
[11] 温江涛,孙洁娣,于洋,等. 基于小波包字典优化的旋转机械振动信号压缩感知重构方法[J]. 振动与冲击,2018,37(22):164-172.
WEN Jiang-tao, SUN Jie-di, YU Yang, et al. Compressed sensing reconstruction forrotating machinery vibration signals based on the wavelet packet dictionary optimization [J]. Journal of vibration and shock, 2018, 37(22): 164-172.
[12] 郭俊锋,王茁. 一种基于多测量向量模型的机械振动信号联合稀疏重构方法[J]. 振动与冲击,2021,40(01):254-263.
GUO Jun-feng, WANG Zhuo. A joint sparse reconstruction method for mechanical vibration signals based on multi-measurement vector model [J]. Journal of vibration and shock, 2021, 40(01): 254-263.
[13] CANDES E, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
[14] CANDES E, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
[15] HUANG X. Compressive sensing and reconstruction in measurements with an aerospace application [J]. AIAA Journal, 2013, 51(4): 1011-1016.
[16] 肖志成,田杰,姚丹,等. 压缩感知在轴流压气机周向模态识别中的应用[J]. 航空动力学报,2019,34(01):163-174.
XIAO Zhi-cheng, TIAN Jie, YAO Dan, et al. Application of compressed sensing in circumferential modal identification of axial compressor [J]. Journal of Aerospace Power, 2019, 34(01):163-174.

PDF(3356 KB)

Accesses

Citation

Detail

段落导航
相关文章

/