基于显式模型预测控制的轮毂驱动电动车垂向振动研究

李仲兴,李忠远,刘晨来

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 259-265.

PDF(2100 KB)
PDF(2100 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 259-265.
论文

基于显式模型预测控制的轮毂驱动电动车垂向振动研究

  • 李仲兴,李忠远,刘晨来
作者信息 +

Vertical vibration of hub motor driven electric vehicle based on EMPC

  • LI Zhongxing, LI Zhongyuan, LIU Chenlai
Author information +
文章历史 +

摘要

针对轮毂驱动电动车非簧载质量增大而引起的行驶平顺性和操纵稳定性恶化问题,提出了基于显式模型预测控制(EMPC)理论的主动悬架控制方法。建立由刚性环轮胎模型和空气悬架模型组成的四自由度系统模型,并确定车辆平顺性、稳定性和电机性能多目标函数及约束条件;基于多参数二次规划理论,将隐式模型预测控制系统转换为与之对应的显式多面体分段仿射(PPWA)系统,离线求解状态变量间的最优控制律,并运用参数分区上的显式控制律求得最优主动力。仿真结果表明:相较于被动悬架和运用天棚控制策略的主动悬架,基于EMPC理论控制的主动悬架对车身垂向加速度、轮胎动载荷和轮毂电机偏心距均方根值提升效果明显,改善了轮毂电机驱动电动车的行驶平顺性、操纵稳定性和电机性能。

Abstract

Aiming at solving the deterioration of ride comfort and operation stability caused by the increase of unsprung mass of hub motor driving electric vehicle, an active suspension control method based on explicit model predictive control (EMPC) theory was proposed. A four-degree-of-freedom system model consisting of a rigid ring tire model and an air suspension model was established. Multi-objective functions and constraint conditions for vehicle ride comfort, stability and motor performance were determined. Based on the multi-parametric quadratic programming theory, the implicit model predictive control system was converted into the corresponding explicit polyhedral piece-wise affine (PPWA) system, the optimal control law between state variables was solved off-line, and used the explicit control law on the parameter partition to obtain the optimal main force. The simulation result shows that the proposed suspension system based on explicit model predictive control has a significant effect on the RMS value of the vehicle body vertical acceleration, tire dynamic load and hub motor eccentricity compared with passive suspension and active suspension using sky-hook control strategy. The proposed method improves the ride comfort, operation stability and motor performance of the hub motor driving electric vehicle.

关键词

主动悬架 / 显式模型预测控制 / 多参数二次规划 / 多面体分段仿射

Key words

active suspension / explicit model predictive control / multi-parametric quadratic programming / polyhedral piece-wise affine

引用本文

导出引用
李仲兴,李忠远,刘晨来. 基于显式模型预测控制的轮毂驱动电动车垂向振动研究[J]. 振动与冲击, 2022, 41(11): 259-265
LI Zhongxing, LI Zhongyuan, LIU Chenlai. Vertical vibration of hub motor driven electric vehicle based on EMPC[J]. Journal of Vibration and Shock, 2022, 41(11): 259-265

参考文献

[1]李勇,徐兴,孙晓东,等. 轮毂电机驱动技术研究概况及发展综述[J]. 电机与控制应用,2017, 44(06): 1-7.
LI Yong, XU Xing, SUN Xiaodong, et al. Review and future development of in-wheel motor drive technology[J]. Electric Machines & Control Application, 2017, 44(06): 1-7.
[2] 钟银辉,李以农,杨超,等. 基于主动悬架控制轮边驱动电动车垂向振动研究[J]. 振动与冲击,2017, 36(11): 242-247.
ZHONG Yinhui, LI Yinong, YANG Chao, et al. Vertical vibration of in-wheel motor electric vehicles based on active suspension control [J]. Journal of vibration and shock, 2017, 36(11): 242-247.
[3] 汪若尘,俞 峰,邵 凯,等. 集成电磁悬架的轮毂驱动电动车垂向振动抑制方法研究[J]. 农业机械学报,2018, 49(07): 382-389.
WANG Ruochen, YU Feng, SHAO Kai, et al. Design and performance analysis of electromagnetic suspension based on in-wheel motor Car [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(07): 382-389.
[4] 李 哲,郑 玲,胡一明,等. 轮毂驱动电动汽车振动负效应及抑制方法[J]. 重庆大学学报, 2019, 42(02): 20-29.
Li Zhe, ZHENG Ling, HU Yiming, et al. Negative vibration effects of in-wheel motor electric vehicles and the method for suppressing them [J]. Journal of Chongqing University, 2019, 42(02): 20-29.
[5] 李佩琳,方明霞. 轮毂驱动电动汽车主动悬架的时滞控制[J]. 噪声与振动控制, 2020, 40(04): 137-141.
LI Peilin, FANG Mingxia. Time-delay H∞ control for active suspension ystem of wheel-driven electric vehicles [J]. Noise and Vibration Control, 2020, 40(04): 137-141.
[6] WANG R G, JING H, YAN F J, et al. Optimization and finite-frequency H∞ control of active suspensions in in-wheel motor driven electric ground vehicles [J]. Journal of the Franklin Institute, 2015, 352(2): 468-484.
[7] IBRAHIM K, GHAZALY N, ALI A S. Simulation control of an active suspension system using fuzzy control & H∞ control methods[J]. 2016 16th International Conference on Control, Automation and Systems , 2016: 1077-1082.
[8] LUO J L, WU W, GE L K. Vertical dynamics of voice coil motor active suspension with active disturbance rejection control[J]. IEEE International Conference on Mechatronics and Automation, 2019: 1919-1924.
[9] 李庆. 轮毂电机电动车机电磁固耦合垂向振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LI Qing. Research on mechanism of mechanical electrical magnetical and solid coupling vibration in vertical direction of hub motor electric vehicle[D]. Harbin:Harbin Institute of Technology, 2017.
[10] 郭孔辉,吴海东,卢 荡. 轮胎垂直方向刚性环模型[J]. 科学技术与工程, 2007(04): 556-559.
GUO Konghui,WU Haidong,LU Dang. Tire vertical rigid ring model[J]. Science Technology and Engineering, 2007(04): 556-559.
[11] FREY N W. Development of a rigid ring tire model and comparison among various tire models for ride comfort simulations[D]. South Carolina: Clemson University, 2009.
[12] 卢 凡,陈思忠.汽车路面激励的时域建模与仿真[J]. 汽车工程,2015, 37(05): 549-553.
Lu Fan, Chen Sizhong. Modeling and simulation of road surface excitation on vehicle in time domain [J]. Automotive Engineering, 2015, 37(05): 549-553.
[13] BEMPORAD A. A Multi-parametric quadratic programming algorithm with polyhedral computations based on nonnegative least squares[J]. IEEE Transactions on Automatic Control, 2015, 60(11): 2892-2903.
[14] 赵树恩,冷 姚,邵毅明. 车辆多目标自适应巡航显式模型预测控制[J]. 交通运输工程学报, 2020,20(03):206-216.
ZHAO Shuen, LENG Yao, SHAO Yiming. Explicit model predictive control of multi-objective adaptive cruise of vehicle [J]. Journal of Traffic and Transportation Engineering, 2020, 20(03): 206-216.
[15] WANG D, ZHAO D, GONG M et al. Research on robust model predictive control for electro-hydraulic servo active suspension systems[J]. IEEE Access, 2018, 6: 3231-3240.
[16] THEUNISSEN J, SORNIOTTI A, MEMBEI. Regionless explicit model predictive control of active suspension systems with preview[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 4877-4888.
[17] MAI V N, YOON D S, CHOI S B, et al. Explicit model predictive control of semi-active suspension systems with magneto-rheological dampers subject to input constraints[J]. Intelligent Material Systems and Structures, 2020, 31(9): 1157-1170.
[18] ZHANG H Z, LIANG J S Yuan C C, et al. Application of explicit model predictive control to a vehicle semi-active suspension system[J]. Low frequency noise vibration and active control, 2020, 39(3): 772-786.

PDF(2100 KB)

Accesses

Citation

Detail

段落导航
相关文章

/