正切非线性包装系统跌落冲击的MSLP解

霍银磊,刘彦亨,陈无忌

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 266-270.

PDF(1180 KB)
PDF(1180 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 266-270.
论文

正切非线性包装系统跌落冲击的MSLP解

  • 霍银磊,刘彦亨,陈无忌
作者信息 +

MSLP solution to dropping shock of tangent nonlinear packaging system

  • HUO Yinlei, LIU Yanheng, CHEN Wuji
Author information +
文章历史 +

摘要

针对有阻尼正切型非线性包装系统在发生跌落冲击时的响应问题,基于Multi-Scale Lindstedt-Poincare摄动法(MSLP)讨论了系统跌落冲击响应的一、二次近似解。并与龙哥库塔法(R-K)的数值结果及相关文献进行了对比,对比结果显示:对于本文的正切型强非线性包装系统,MSLP计算的最大位移和加速度响应的一阶近似解与R-K数值结果对比的相对误差分别为1.35%和3.28%,二次近似阶的相对误差分别为0.62%和1.84%,在不进行能量修正的情况下,比同伦摄动法[13-14]、牛顿谐波平衡法[17]的精度更高。考虑阻尼系统能量修正的复杂性,所求有阻尼正切型非线性系统跌落冲击一次近似解析具有较好的精度和简洁的形式,为此类问题的求解及工程应用提供了参考。

Abstract

Based on the multi-scale method and Lindstedt-Poincare perturbation method (MSLP),the approximate solution of dropping shock of damped tangent nonlinear packaging system are discussed. By compared with the R-K solutions and related references, the results show that the analytical expression has good precision, especially for small damping shock response analysis of strong nonlinear packaging system, even without additional correction for the amplitude and frequency. Considering the complexity of energy correction for damped system, the first approximate analysis of dropping shock of damped tangent nonlinear system is more useful, which provides a reference for solving such problems and engineering application benefit from its good precision and simple form.
 

关键词

正切非线性 / 阻尼系统 / MSLP法 / 跌落冲击响应

Key words

tangent nonlinear
/ damped system / MSLP method / dropping shock

引用本文

导出引用
霍银磊,刘彦亨,陈无忌. 正切非线性包装系统跌落冲击的MSLP解[J]. 振动与冲击, 2022, 41(11): 266-270
HUO Yinlei, LIU Yanheng, CHEN Wuji. MSLP solution to dropping shock of tangent nonlinear packaging system[J]. Journal of Vibration and Shock, 2022, 41(11): 266-270

参考文献

[1] He J H. Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part I: expansion of a constant [J]. International Journal of Non-Linear Mechanics, 2002, 37: 309-314.
[2] He J H. Modified Lindstedt-Poincare methods for some strongly non-linear oscillations Part II: a new transformation [J]. International Journal of Non-Linear Mechanics, 2002, 37: 315-320.
[3] Hu H. A classical perturbation technique which is valid for large parameters[J]. Journal of Sound and Vibration, 2004, 269 (1-2) 409–412.
[4] Hu H, Xiong Z G. Comparison of two Lindstedt-Poincaré type perturbation methods[J]. Journal of Sound and Vibration, 2004, 278(1-2):437-444.
[5] Cai J P. Numerical comparisons of two Lindstedt -Poincare type perturbation methods for the duffing equation[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2009,10(7):959-963.
[6] 李银山, 郝黎明, 树学锋. 强非线性Duffing方程的摄动解[J]. 太原理工大学学报, 2000, 31(5) :516-520
Li Yin-Shan, Hao Li-Ming, Shu Xue-Feng. Asyptotic Solution of Strongly Nonlinear Duffing Equation[J]. Journal of Taiyuan University of technology, 2000. 31(5) :516-520
[7] 陈衍茂, 刘济科. 多尺度法二义性的一种解释[J]. 力学学报, 2007, 39(1):137-140.
Chen Yan-mao Liu Ji-ke. Remarks on the ambiguity in Multiple Scales method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1):137-140.
[8] Pakdemirli M, Karahan M M F, Boyacı H. A new perturbation algorithm with better convergence properties: Multiple Scales Lindstedt Poincare Method[J]. Mathematical & Computational Applications, 2009, 14(1):31-44.
[9] Pakdemirli M, Karahan M M F. A new perturbation solution for systems with strong quadratic and cubic nonlinearities[J]. Mathematical Methods in the Applied Sciences, 2010, 33(6):704-712.
[10] Mehmet P, Gözde Sarı. Solution of Quadratic Nonlinear Problems with Multiple Scales Lindstedt-Poincare Method[J]. Mathematical & Computational Applications, 2015, 20(2): 137-150.
[11] Karahan, M M. Fatih, Pakdemirli, Mehmet. Free and Forced Vibrations of the Strongly Nonlinear Cubic-Quintic Duffing Oscillators[J]. Zeitschrift Naturforschung Teil A, 2016, 72(1).
[12] 宋浩, 李宏卫. 正切型非线性包装系统跌落冲击响应分析的何氏PEM与修正[J]. 包装工程, 2016, 37(1):11-14.
SONG Hao, LI Hong-wei. Correction of He's Parameter- expanding Method for Analyzing Dropping Shock Response of Tangent Nonlinear Packaging System[J]. Packaging Engineering, 2016, 37(1): 11-14.
[13] 郭蓓蓓, 王军. 正切型非线性包装系统跌落冲击响应分析的同伦摄动法与修正[J]. 振动与冲击, 2018,37(22): 111-114.
Guo Bei-bei, Wang Jun. Correction of the homotopy perturbation method for analyzing dropping shock response of a tangent nonlinear packaging system[J]. Journal of Vibration and Shock, 2018, 37(22): 111-114.
[14] Ji Q P, Wang J, Lu L X, et al. Li-He’s modified homotopy perturbation method coupled with the energy method for the dropping shock response of a tangent nonlinear packaging system[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 0(0):1-8.
[15] Song H. A modification of homotopy perturbation method for a hyperbolic tangent oscillator arising in nonlinear packaging system[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019, 38(3-4): 914-917.
[16] 赵晓兵, 杜兴丹, 陈安军. 正切型缓冲系统跌落冲击响应分析的NHB方法[J]. 包装工程,2019,40(7):46-50.
ZHAO Xiao-bing, DU Xing-dan, CHEN An-jun. NHB Method for Analyzing Dropping Shock Response of Cushion Packaging System with Tangent Nonlinearity[J]. Packaging Engineering, 2019, 40(7):46-50.
[17] 仲晨, 秦清海, 赵冬菁. 含线性阻尼的正切型包装系统跌落冲击响应分析的NHB法[J].包装工程, 2020, 41(23): 109-114.
ZHONG Chen, QIN Qing-hai, ZHAO Dong-jing. NHB Method for Analyzing Drop Shock Response of Tangent Packaging System with Linear Damping[J]. Packaging Engineering, 2020, 41(23): 109-114.
[18] Nayfeh H, Introduction to Perturbation Techniques, John Wiley and Sons, New York 1981.

PDF(1180 KB)

Accesses

Citation

Detail

段落导航
相关文章

/