SHTB的拉伸冲击波谱加载方法研究

王凡,郭伟国,吴倩,赵思晗

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 278-284.

PDF(1666 KB)
PDF(1666 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 278-284.
论文

SHTB的拉伸冲击波谱加载方法研究

  • 王凡,郭伟国,吴倩,赵思晗
作者信息 +

Tensile impact wave spectrum loading method for SHTB

  • WANG Fan, GUO Weiguo, WU Qian, ZHAO Sihan
Author information +
文章历史 +

摘要

为了理解动态变形和塑性流动过程中,加载历史和应变率变化对材料性能的影响,基于直接拉伸式Hopkinson杆原理,使用不同几何形状的反射杆代替凸缘法兰,在加载杆中连续产生多个不同幅值的加载冲击波,使材料在动态变形的过程中应变率阶跃变化。结果表明:(1)该方法可以将加载波的脉宽延长3倍以上,有利于进行低应变率、大变形的材料试验;(2)加载应力波的幅值阶梯变化,使试样在加载过程中应变率发生跳跃变化;(3)通过控制反射杆的长度可以有效控制加载脉冲的间隔,将材料的应变率效应和温度效应解耦,用于揭示不同脉冲幅值作用下试样变形损伤机制。试验证明,基于SHTB原理的拉伸波谱的加载方法可以快速、精准、稳定地实现对试样的连续多次动态加载。

Abstract

In the process of dynamic deformation and plastic flow, loading history and changes in strain rate have influence on mechanical properties of materials. Based on traditional split Hopkinson tension bar, increase the length of flange as a reflection bar whose geometry is variable. Several loading waves with different amplitudes are generated continuously in the loading bar. The strain rate of the material in the process of dynamic deformation has a step change. Firstly, the results show that reflection bar can prolong the pulse width of the loading wave by more than three times, which is beneficial to the realization of low strain rate and large deformation material experiment. Secondly, strain rate of the specimen has a step change in the process of deformation due to the change of stress wave pulse. Thirdly, the interval of loading pulses can be effectively controlled, and the strain rate effect and temperature effect can be decoupled. It is convenient to reveal the deformation and damage mechanism of specimen under different pulse amplitudes. To conclude, the method presented in this paper can quickly, accurately and stably realize continuous dynamic loading of specimen.

关键词

分离式Hopkinson拉杆 / 冲击加载谱 / 应变率阶跃 / 材料动态性能

Key words

split Hopkinson tension bar / impact loading spectrum / strain rate step change / material dynamic performance

引用本文

导出引用
王凡,郭伟国,吴倩,赵思晗. SHTB的拉伸冲击波谱加载方法研究[J]. 振动与冲击, 2022, 41(11): 278-284
WANG Fan, GUO Weiguo, WU Qian, ZHAO Sihan. Tensile impact wave spectrum loading method for SHTB[J]. Journal of Vibration and Shock, 2022, 41(11): 278-284

参考文献

[1] 洪钟瑜,林建中.滑动轴承动态特性的锤击法试验研究[J].振动与冲击,1995,2(54). DOI:10.13465/j.cnki.jvs.1995.02.006.
Hong Zhongyu, Lin Jianzhong. Experimental study on dynamic characteristics of journal bearing by hammer inpluse method[J]. Journal of Vibration and Shock,1995,2(54).
[2] 周惠久,黄明志. 在多次重复冲击载荷下钢的断裂抗力的研究[J]. 西安交通大学学报,1962,2(1):1-19.
Zhou Huijiu, Huang Mingzhi. Study on the steel fracture resistance under repeated impact loads[J].Journal of Xi’an Jiaotong University,1962,2(1):1-19.
[3] Cao D F, Liu L S, Liu Q W, et al. Compressive Properties of SiC Particle-Reinforced Aluminum Matrix Composites Under Repeated Impact Loading[J]. Strength of Materials,2015,47:61–67. DOI: 10.1007/s11223-015-9628-0
[4] Nemat-Nasser S, Isaacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys[J]. Acta Metallurgica, 1997, 45: 907–919. DOI: 10.1016/S1359-6454(96)00243-1.
[5] Nemat-Nasser. S, Guo W G, Liu M. Experimentally-based micromechanical modeling of dynamic response of molybdenum[J]. Scripta Materialia, 1999, 40: 859–872. DOI: 10.1016/S1359-6462(99)00041-X.
[6] Thakur A. Nemat-Nasser S. Vecchio K.S. Dynamic Bauschinger effect[J]. Acta Materialia, 1996, 7(44):2797-2807. DOI: 10.1016/1359-6454(95)00385-1.
[7] Nemat-Nasser S, Isaacs J B, Starrett J E. Hopkinson techniques for dynamic recovery experiments[J]. Mathematical and Physical Sciences, 1991, 435(1894): 371-391. DOI:10.1098/rspa.1991.0150.
[8] Lindholm U S. Some experiments with the split Hopkinson pressure bar[J]. Journal of the Mechanics and Physics of Solids, 1964, 12(5):317-335.DOI: 10.1016/0022-5096(64)90028-6.
[9] 李夕兵,古德生,赖海辉. 岩石在不同应力波下的动态响应[C]//第三届全国岩石动力学论文选集. 武汉,1992:142-151.
Li Xibing, Gu Desheng, Lai Haihui. Dynamic response of rock under different stress waves[C]// The third national anthology of rock dynamics papers. Wuhan, 1992:142-151.
[10] 刘德顺,彭佑多,李夕兵. 冲击活塞的动态反演设计与试验研究[J].机械工程学报,1998,34(4):78-84. DOI: 10.3321/j.issn:0577-6686.1998.04.014.
Liu Deshun,Peng Youduo,Li Xibing,et al. Inverse design and experimental study on impact piston[J]. Chinese Journal of Mechanical Engineering, 1998,34(4):78–84.
[11] Yuan K B, Guo W G, Su Y, et al. Study on several key problems in shock calibration of high-g accelerometers using Hopkinson bar[J]. Sensors & Actuators: A. Physical, 2017, 258 : 1-13. DOI: 10.1016/j.sna.2017.02.017.
[12] Luo H Y, Chen W N W, Rajendran A M. Dynamic compressive response of damaged and interlocked SiC-N ceramics[J]. Journal of American Ceramic Society, 2006, 89(1):266-273.
[13] Xia K, Chen R, Huang S, et al. Controlled multipulse loading with a stuffed striker in classical split Hopkinson pressure bar testing[J]. Review of Scientific Instruments, 2008, 79:053906 .
[14] Huang W K, Chen G X, Hu M B, et al. A miniature multi-pulse series loading Hopkinson bar experimental device based on an electromagnetic launch[J]. Review of Scientific Instruments, 2019, 90: 025110. DOI: 10.1063/1.5077051.
[15] Harding. J, Wood. E. O, Campbell. J.D. Tensile testing of materials at impact rates of strain[J]. Journal of Engineering Mechanics, 1960, 2: 88–96. DOI: 10.1243/JMES_JOUR_1960_002_016_02.
[16] Staab. G. H, Gilat. A. A direct-tension split Hopkinson bar for high strain-rate testing[J]. Experimental Mechanics, 1991, 31: 232–235. DOI: 10.1007/BF02326065..
[17] 郭伟国.应力波基础简明教程[M]. 西北工业大学出版社,2007:1-10
Guo Weiguo. A brief tutorial on the foundation of stress waves[M]. Northwestern Polytechnical University Press,2007:1-10.
[18] 王礼立.应力波基础[M].国防工业出版社,2005:1-20.
WANG Lili. Foundation of stress waves[M]. National Defense Industry Press, 2005:1-20.
[19] 周永康,陈力,崔世堂.一种新型软材料动态直接拉伸实验技术[J]. 振动与冲击,2017,36(22). DOI: 10.13465/j.cnki.jvs.2017.22.023.
Zhou Yongkang, Chen Li, Cui Shitang. An improved SHTB experimental facility for soft material[J]. Journal of Vibration and Shock,2017,36(22).
[20] 聂良学,许金余,任韦波,等.不同温度及加载速率对混凝土冲击变形韧性影响[J].振动与冲击,2015,34(06):67-71. DOI: 10.13465/j.cnki.jvs.2015.06.013.
Nie Liangxue, Xu Jinyu, Ren Weibo, et al. Effects of temperature and impact velocity on impact deformation and toughness of concrete[J]. Journal of Vibration and Shock, 2015,34(06):67-71.
[21] 王志坤,许金余,范建设,等. 温度、应变率对地质聚合物混凝土抗压强度的影响[J].振动与冲击,2014,33(17):197-202. 10.13465/j.cnki.jvs.2014.17.035.
Wang Zhikun, Xu Jinyu, Fan Jianshe, et al. Effects of temperature and strain rate on compressive strength of geopolymeric concrete[J]. Journal of Vibration and Shock, 2014,33(17):197-202.

PDF(1666 KB)

Accesses

Citation

Detail

段落导航
相关文章

/