基于有限测量信息的两步响应重构方法

史鹏程1,彭珍瑞1,董康立2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 291-297.

PDF(1948 KB)
PDF(1948 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 291-297.
论文

基于有限测量信息的两步响应重构方法

  • 史鹏程1,彭珍瑞1,董康立2
作者信息 +

Two-step response reconstruction method based on limited measured information

  • SHI Pengcheng1, PENG Zhenrui1, DONG Kangli2
Author information +
文章历史 +

摘要

提出了分两步进行结构响应重构的方法,可实现利用正常测量的响应对因传感器损坏而丢失或其余所需的响应进行重构。首先,建立各处正常工作的传感器的测量响应与需要重构响应的关系,计算出含噪声的各类响应。然后,使用粒子滤波算法降低测量过程中有色噪声对于重构精度的影响,并且在粒子滤波算法中引入萤火虫算法代替重采样过程,改善粒子贫化现象。最后对一个二维桁架进行数值模拟,结果显示该方法与直接使用测量响应进行响应重构的方法相比有更高的精度。

Abstract

A two-step structural response reconstruction method is proposed, which can reconstruct the lost response due to sensor damage and the rest of the required response by using the response of normal measurement. Firstly, the relationship between the measured response of the sensors which are working normally and the responses needed reconstructed is established, and all kinds of responses with noise are calculated. Then, the particle filter algorithm is used to reduce the influence of colored noise on the reconstruction accuracy in the measurement process, and the firefly algorithm is introduced to replace the resampling process in the particle filter algorithm to improve the particle impoverishment. Finally, a two-dimensional truss is simulated, and the results show that the proposed method has higher accuracy than the direct response reconstruction method.

关键词

有限测量信息 / 粒子滤波算法 / 萤火虫算法 / 响应重构 / 有色噪声

Key words

limited measurement information / particle filter / firefly algorithm / response reconstruction;colored noise

引用本文

导出引用
史鹏程1,彭珍瑞1,董康立2. 基于有限测量信息的两步响应重构方法[J]. 振动与冲击, 2022, 41(11): 291-297
SHI Pengcheng1, PENG Zhenrui1, DONG Kangli2. Two-step response reconstruction method based on limited measured information[J]. Journal of Vibration and Shock, 2022, 41(11): 291-297

参考文献

[1] 李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8): 1-7.
LI Hui, BAO Yue-quan, LI Shun-long, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8): 1-7.
[2] 孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11): 1-20.
SUN Li-min, SHANG Zhi-qiang, XIA Ye. Development and prospect of bridge structural health monitoring in the context of big data[J]. China Journal of Highway and Transport, 2019, 32(11): 1-20.
[3] Sun L M, Li Y X, Zhu W, et al. Structural response reconstruction in physical coordinate from deficient measurements[J]. Engineering Structures, 2020, 212, 110484, 13pages.
[4] Bao Y Q, Chen Z C, Wei S Y, et al. The state of the art of data science and engineering in structural health monitoring [J].Engineering, 2019, 5(2): 234-242.
[5] Kammer D C. Estimation of structural response using remote sensor locations[J]. Journal of guidance, control and dynamics, 1997, 20(3): 501-508.
[6] Zhang X H, Xu Y L, Zhu S Y, et al. Dual-type sensor placement for multi-scale response reconstruction[J]. Mechatronics, 2014, 24(4): 376-384.
[7] Zhang X H, Zhu S, Xu Y L, et al. Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response. International Journal of Structural Stability and Dynamics, 2011, 11(3): 581-602.
[8] Ribeiro A M R, Silva J M M, Maia N M M. On the generalisation of the transmissibility concept[J]. Mechanical Systems and Signal Processing, 2000, 14(1): 29-35.
[9] Law S S, Li J, Ding Y. Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 952-968.
[10] Li J, Law S S. Substructural response reconstruction in wavelet domain[J]. Journal of Applied Mechanics, 2011, 78(4): 041010, 10pages.
[11] 张笑华, 任伟新, 方圣恩. 两种传感器的位置优化及结构多种响应重构[J]. 振动与冲击, 2014, 33(18): 26-30.
ZHANG Xiao-hua, REN Wei-xin, FANG Sheng-en, Location optimization of dual-type sensors for multi-kind structural response reconstruction [J]. Journal of Vibration and Shock, 2014, 33(18): 26-30.
[12] Xu Y L, Zhang X H, Zhu S Y, et al. Multi-type sensor placement and response reconstruction for structural health monitoring of long-span suspension bridges[J]. Science Bulletin, 2016, 61(4): 313-329.
[13] 任鹏, 周智, 白石, 等. 桁架结构疲劳监测的应变响应估计方法研究[J]. 工程力学, 2018, 35(9): 114-125.
REN Peng, ZHOU Zhi, BAI Shi, et al. Research on a strain response estimation method for truss structure fatigue monitoring[J]. Engineering Mechanics, 2018, 35(9): 114-125.
[14] 董康立, 殷红, 彭珍瑞. 面向多类型传感器优化布置的结构响应重构[J]. 控制理论与应用, 2018, 35(9): 1339-1346.
DONG Kang-li, YIN Hong, PENG Zhen-rui. Structural response reconstruction oriented to optimal multi-type sensor placement[J]. Control Theory & Applications, 2018, 35(9): 1339-1346.
[15] 滕飞,薛磊,李修和.基于KLD的蝙蝠算法优化自适应粒子滤波[J].控制与决策,2019,34(3):561-566.
TENG Fei, XUE Lei, LI Xiu-he. Adaptive particle filter with bat optimization based on KLD sampling[J]. Control and Decision, 2019, 34(3): 561-566.
[16] 田梦楚,薄煜明,陈志敏,等.萤火虫算法智能优化粒子滤波[J].自动化学报,2016,42(1):89-97.
TIAN Meng-chu, BO Yu-ming, CHEN Zhi-min,et al. Firefly algorithm intelligence optimized particle filter[J]. Acta Automatica Sinica, 2016, 42(1): 89-97.
[17] 张笑华,周海洋,吴志彪.子结构传感器位置优化和响应重构[J].振动与冲击,2020,39(6):257-262+270.
ZHANG Xiaohua, ZHOU Haiyang, WU Zhibiao. Sensor Location Selection and Response Reconstruction of a Substructure[J]. Journal of Vibration and Shock, 2020,39(6):257-262+270.
[18] Zhang C D, Xu Y L. Optimal multi-type sensor placement for response and excitation reconstruction[J]. Journal of Sound and Vibration, 2016, 360: 112-128.
[19] Hu R P, Xu Y L, Lu X , et al. Integrated multi-type sensor placement and response reconstruction method for high-rise buildings under unknown seismic loading[J]. The structural design of tall buildings, 2018, 27(6):1-20.
[20] Eric M. Hernandez. Balancing robustness and optimality in sensor placement for dynamic state estimation[J]. Mechanical Systems and Signal Processing,2019, 128:318-328.
[21] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[J]. IEE Proceedings F-Radar and Signal Processing, 1993, 140(2): 107-113.

PDF(1948 KB)

330

Accesses

0

Citation

Detail

段落导航
相关文章

/