定日镜作为典型的风敏感结构,设计中必须考虑其动力特性和风致响应。选用大涡模拟(LES)和分离涡模拟(DES),结合一种新的湍流脉动流场产生方法 (Discretizing and Synthesizing Random Flow Generation, DSRFG)模拟风场的湍流边界条件,计算得到了0°风向角下0°、30°、60°镜面仰角下定日镜的流场分布和风荷载时程数据。建立了定日镜整体结构的有限元模型,进行了定日镜整体结构在不同镜面仰角下的风致响应分析。结果表明,通过与风洞试验结果对比,LES和DES能较好地预测出顺风向等效风荷载,但LES的结果更接近试验值;随着仰角增大,定日镜下部的共振峰值能量逐渐减小,上部的共振峰值能量逐渐增大;定日镜下部的最不利工况为仰角0°时,风振系数为3.1,中上部的最不利工况发生在仰角为60°时,风振系数分别为2.0、3.4;LES和DES能较好地模拟出流场中的紊流与涡旋,且随着仰角增大,尾流区变得狭长。本文结合风洞试验,为定日镜以及相似结构的数值模拟以及抗风设计提供了参考。
Abstract
Heliostat as a typical wind-sensitive structure, its dynamic characteristics and wind induced response must be considered in the design stage. The Large Eddy Simulation(LES) and the Detached Eddy Simulation(DES) were applied. Integrated with a new inflow generation, Discretizing and Synthesizing Random Flow Generation(DSRFG), to simulate the turbulence boundary conditions of the flow field. And acquire the flow field distribution and wind load time-history data of the heliostat under 0° wind direction angle and 0°、30°、60° elevation angle. The finite element model of the heliostat was established, and the wind induced responses of heliostat under different elevation angles were performed. Comparison with wind tunnel test results, the along-wind equivalent wind load of the heliostat, which was computed by LES and DES, respectively, were in satisfactory agreement with wind tunnel test. But the results of LES comparatively approach the wind tunnel test. With the increase of the elevation angle, the resonance peak of the bottom of the heliostat gradually decreases, and the resonance peak of the top of the heliostat gradually increases. The most unfavorable conditios of the bottom of heliostat is 0° elevation angle, and the wind vibration coefficient is 3.1. The most unfavorable condition of the middle and top of heliostat is 60° elevation angle, and wind vibration coefficient are 2.0 and 3.4,respectively. The turbulence and vortex in the flow field can be well simulated by LES and DES. And the wake flow of heliostat becomes long and narrow, as the elevation angle increases. Combined with wind tunnel test, this paper provides a reference for wind numerical simulation and wind resistance design of heliostat and similar structures.
关键词
定日镜 /
LES /
DES /
风荷载 /
风致响应
{{custom_keyword}} /
Key words
heliostat /
LES,;DES /
wind load /
Wind induced response
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Terrés-Nícoli J M, Mans C, King J P C. Dynamic effects of a heliostat to wind loading[J]. Energy Procedia, 2014, 47: 1728-1736.
[2] Vasquez-Arango J F, Buck R, Pitz-Paal R. Dynamic properties of a heliostat structure determined by numerical and experimental modal analysis[J]. Journal of Solar Energy, 2015, 137:051001-051005.
[3] Wolmarans J R, Craig K J. One-way fluid-structure interaction of a medium-sized heliostat using scale-resolving CFD simulation[J]. Solar Energy, 2019, 191:84-99.
[4] Gong B, Li Z N, Wang Z F, et al. Wind-induced dynamic response of Heliostat[J]. Renewable Energy, 2012, 38: 206-213.
[5] 王延忠,陈燕燕,臧春城. 基于流固耦合的定日镜风载作用变形分析研究[J]. 太阳能学报, 2016, 37(04):1078-1084.
Wang Yan-zhong, Chen Yan-yan, Zang Chuncheng. Deformation research of heliostat in wind load by fluid-structure interaction method[J]. Acta Energiae Solaris Siniea, 2016, 37(04):1078-1084.
[6] 冯煜,陈小安.三维风场各分量对定日镜动态响应的影响研究[J]. 振动与冲击, 2017, 36(08):156-163.
Feng Yi, Chen Xiao-an. Effect of each direction component in 3D wind field on dynamic response of heliostat[J]. Journal of vibration and shock, 2017, 36(08):156-163.
[7] 王莺歌. 塔式太阳能定日镜结构风荷载特性及风致响应研究[D]. 湖南:湖南大学, 2011.
[8] 肖国铭. 塔式太阳能聚光系统定日镜的运动规律及跟踪精分析[J]. 太阳能学报, 1981, 02(04):404-411.
Xiao Guo-ming. The law of motion for the heliostats of the tower solar energy concentrating system and an analysis of the tracking accuracy[J]. Acta Energiae Solaris Siniea, 1981, 02(04):404-411.
[9] Spalart P R, Jou W H, Strelets M, Allmaras S R. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]. 1st AFOSR Int.Conf. on DNS/LESRuston, LA. In Advances in DNS/LES, C. Liu & Z. Liu Eds., Greyden Press, Colombus, USA . Aug 1997:4-8.
[10] Huang S H, Li Q S, Wu J R. A General inflow turbulence generator for large eddy simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98:600-617.
[11] AIJ-2015. AIJ Recommendations for Loads on Buildings (2015)[S].
[12] Yan B, Li Q S. Large-eddy simulation of wind effects on a super tall building in the urban environment conditions[J]. Structure and Infrastructure Engineering, 2016, 12(06): 765-785.
[13] Daniels J S, Castro I P, Xie Z T. Peak loading and surface pressure fluctuations of a tall model building[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 120:19-28.
[14] Lim H C, Ohba M. Detached eddy simulation of flow around rectangular bodies with different aspect ratios[J]. Wind and structures, 2015,36(01):37-58.
[15] Holmes J D. Effective static load distributions in wind engineering[J]. Journal of Wind Engineering and Industrial, 2002, 90(2):91-109.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}