统计容积卡尔曼滤波器的混合试验模型更新方法

王涛1,李勐1,孟丽岩1,许国山2,王贞3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 72-82.

PDF(5097 KB)
PDF(5097 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 72-82.
论文

统计容积卡尔曼滤波器的混合试验模型更新方法

  • 王涛1,李勐1,孟丽岩1,许国山2,王贞3
作者信息 +

Hybrid Test model updating method based on statistical cubature Kalman filter

  • WANG Tao1, LI Meng1, MENG Liyan1, XU Guoshan2, WANG Zhen3
Author information +
文章历史 +

摘要

为解决模型更新算法因初始参数选择不当对模型参数识别精度的影响,提出统计容积卡尔曼滤波器的混合试验模型更新方法。该方法采用容积卡尔曼滤波器算法多次识别模型参数,将统计后的参数识别值样本均值作为最终的识别结果,以弱化算法初始参数选择对参数识别结果的影响。本文应用统计容积卡尔曼滤波器对自复位摩擦耗能支撑模型进行在线参数识别,分析了在不同参数条件下统计容积卡尔曼滤波器的识别精度;针对两层带有自复位摩擦耗能支撑框架结构进行混合试验数值仿真。结果表明,基于统计容积卡尔曼滤波器的方法可以有效提高模型更新混合试验精度及鲁棒性。

Abstract

In order to avoid the influence of the model updating algorithm on the model parameter identification accuracy due to the improper selection of initial parameters, a hybrid testing model updating method of statistical cubature Kalman filter(CKF) was proposed. The method used CKF algorithm to identify model parameters for several times. In order to weaken the influence of the initial parameter selection of the algorithm on the parameter identification results, the sample mean of the statistical parameter identification value was taken as the final identification result. Statistical CKF was used to identify online parameters of self-centering energy dissipation braces model to verify the reliability of statistical CKF under different parameters; The statistical CKF was tested by the hybrid simulation of two layers of bracing frame with self-centering energy dissipation. The results show that the method based on statistical CKF can effectively improve the accuracy and robustness of model update hybrid testing.

关键词

混合试验 / 模型更新 / 容积卡尔曼滤波器 / 自复位摩擦耗能支撑 / 在线参数识别

Key words

hybrid testing / model updating / cubature Kalman filter / self-centering energy dissipation braces / on-line parameter identification

引用本文

导出引用
王涛1,李勐1,孟丽岩1,许国山2,王贞3. 统计容积卡尔曼滤波器的混合试验模型更新方法[J]. 振动与冲击, 2022, 41(11): 72-82
WANG Tao1, LI Meng1, MENG Liyan1, XU Guoshan2, WANG Zhen3. Hybrid Test model updating method based on statistical cubature Kalman filter[J]. Journal of Vibration and Shock, 2022, 41(11): 72-82

参考文献

[1] Yang W J, Nakano Y. Substructure online test by using real-time hysteresis modeling with a neural network[J]. Advances in Experimental Structural Engineering, 2005, 38: 267-274..
[2] 王燕华, 吕静, 吴京. 基于遗忘因子和LMBP神经网络的混合试验在线模型更新方法[J]. 振动与冲击, 2020, 39(9): 42-48, 56.
WANG Yanhua, LV Jing, WU Jing. On-line model updating method for hybrid testings based on the forgetting factor and LMBP neural
network[J]. Journal of Vibration and Shock, 2020, 39(9): 42-48, 56.
[3] 吴斌, 宁西占, 许国山, 等. 考虑不完整边界条件的新型混合试验方法[J]. 振动与冲击, 2018, 37(15): 150-155.
WU Bin, NING Xizhan, XU Guoshan, et al. A novel hybrid simulation method considering incomplete boundary conditions[J]. ournal of
Vibration and Shock, 2018, 37(15): 150-155.
[4] Zhang J, Wu B, Wang T. Adaptive substructure testing method based on least square[C]// Paper presented at 2011 international conference on electric technology and civil engineering. Lushan, China: IEEE, 2011. 1907-1910.
[5] Hashemi M J, Masroor A, Mosqueda G. Implementation of online model updating in hybrid simulation[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(3): 395-412.
[6] 王涛, 吴斌. 基于UKF模型更新的混合试验方法[J]. 振动与冲击, 2013, 32(05): 138-143.
WANG Tao, WU Bin. Model updating for hybrid testing with unscented Kalman filter[J]. Journal of Vibration and Shock, 2013, 32(05): 138-143.
[7] 梅竹, 吴斌, 杨格. 钢筋混凝土结构材料本构模型参数的在线识别[J]. 工程力学, 2016, 33(07): 108-115.
MEI Zhu, WU Bin, YANG Ge. Online parameter indentification of concrete constitutive model[J]. Engineering Mechanics, 2016, 33(07): 108-115.
[8] MEI Z, WU B, BURSI O S, et al. Hybrid simulation of structural systems with online updating of concrete constitutive law parameters by unscented Kalman filter[J]. Structural Control & Health Monitoring, 2018, 25: e2069.
[9] 陈再现, 钟炜彭, 李秦鸣. 基于均匀设计的模型更新混合模拟试验方法[J]. 振动与冲击, 2020, 39(21): 9-16.
CHEN Zaixian, ZHONG Weipeng, Li Qinming. Model updating hybrid simulation test method based on uniform design[J]. Journal of Vibration and Vhock, 2020, 39(21): 9-16.
[10] ATASARATNAM I, HAYKIN S. Cubature kalman filters[J]. IEEE Transactions on Automatic Contorl, 2009, 54(6): 1254-1269.
[11] 丁家琳. 容积卡尔曼滤波算法研究及其在电机状态估计中的应用[D]. 成都: 西南交通大学, 2015.
DING Jialing. A study on cubature Kalman filter with their applications to state estimation of inductor motor[D]. Chengdu: Southwest Jiaotong University, 2015.
[12] HUANG Q , DENG B. Performance comparison of CKF and UKF in passive state noise of UAV[J]. Journal of Physics: Conference Series, 2020, 1682(1): 012068.
[13] 郭彦, 于艳婷, 胡献君. 非线性滤波方法及其性能比较[J]. 计算机与数字工程, 2016, 44(11): 2113-2117.
GUO Yan, YU Yanting, HU Xianjun. Nonlinear Filtering Methods and Performances Comparison[J]. Computer & Digital Engineering,
2016, 44 (11) : 2113-2117.
[14] XIANG W, Guo R H, Hang L, et al. Marginal reduced High-degree CKF and its application in nonlinear rapid transfer alignment[J]. Journal of Physics: Conference Series, 2019, 1168(6): 062030.
[15] 王涛, 李勐, 孟丽岩. 容积卡尔曼滤波器的Bouc-Wen模型在线参数识别[J]. 黑龙江科技大学学报, 2020, 30(05): 551-555.
Wang Tao, Li Meng, Meng Liyan. On-line parameter identification of Bouc-Wen model with cubature Kalman filter[J]. Journal of Heilongjiang University of Science and Technology, 2020, 30(05): 551-555.
[16] 丁国强. 非线性系统建模与滤波方法[M]. 北京: 北京航空航天大学出版社, 2017.
DING Guoqiang. Non-linear system modeling and filtering methods[M]. Beijing: Beijing University of Aeronautics and Astronautics
Press, 2017.
[17] ZHANG H M, QUAN L M, LV X L. Modified flag-shaped model for self-centering system and its equivalent linearization and structural optimization for stochastic excitation[J]. Engineering Structures, 2020, 215: 110420.

PDF(5097 KB)

Accesses

Citation

Detail

段落导航
相关文章

/