下击暴流作用下大跨平屋面的极值风压分析

汪之松1,2,向明1,江水灵1,唐阳红1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 83-89.

PDF(2022 KB)
PDF(2022 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 83-89.
论文

下击暴流作用下大跨平屋面的极值风压分析

  • 汪之松1,2,向明1,江水灵1,唐阳红1
作者信息 +

Extreme wind pressure analysis for large-span flat roof under downburst

  • WANG Zhisong1,2, XIANG Ming1, JIANG Shuiling1, TANG Yanghong1
Author information +
文章历史 +

摘要

在下击暴流风场中,大跨平屋面建筑顶部的来流分离区及尾流区域处风压具有极强的非高斯特性。基于稳态冲击射流作用下的大跨平屋面建筑刚性测压试验结果,使用高阶统计量法研究了典型径向距离处屋面风压高斯与非高斯分区特性,利用TPP法计算测点峰值因子,发现平屋面表面测点极值风压系数与建筑物离下击暴流喷口间距有密切关系,研究结果表明:在下击暴流作用下,大跨平屋面部分区域出现明显的风压非高斯特性,尤其是迎风面及背风面边缘区域;风压高斯分布区域及屋面结构侧风面边缘区域峰值因子较小,屋面峰值因子取值范围在3.99到9.29之间,测点峰值因子均明显大于《建筑结构荷载规范》中的取值;在不同径向距离处,极值风压系数均为负值,来流分离区域及尾流区域风压系数绝对值较大;极小值风压系数绝对值随径向距离的增加先增大再减小,在径向距离为1.25Djet时极小值风压系数绝对值出现最大值。

Abstract

In the downburst wind field, the wind pressure at the top of the large-span flat roof building in the separation zone of the incoming flow and the wake area is extremely non-Gaussian. Based on the results of the rigid pressure test of large-span flat roof buildings under the action of steady-state impinging jets, the high-order statistics method was adapted to study the Gaussian and non-Gaussian partition characteristics of roof wind pressure at typical radial distances. The peak value of the measured points is calculated by the TPP method. It found that the extreme wind pressure coefficient of the measuring point on the flat roof surface is closely related to the distance between the building and the downburst vent. The results show that under the action of downburst, there are obvious non-Gaussian characteristics of wind pressure in some areas of the long-span flat roof, especially in the windward and leeward edge areas, and the peak factors of the Gaussian distribution of wind pressure and the edge of the side wind surface of the roof structure are relatively small. The range of the roof peak factor is between 3.99 and 9.29, and the peak factor of the measuring point is obviously larger than that in the load Code for Building structures. At different radial distances, the extreme wind pressure coefficients are negative, and the absolute values of the wind pressure coefficients in the incoming flow separation region and wake region are larger. The absolute value of the minimum wind pressure coefficient first increases and then decreases with the increase of the radial distance, and the absolute value of the minimum wind pressure coefficient reaches the maximum when the radial distance is 1.25Djet.

关键词

冲击射流 / 大跨平屋面建筑 / 非高斯特性 / 峰值因子 / 极值风压系数

Key words

Impinging jet / large-span flat roof structure / non-Gaussian / peak factor / extreme wind pressure coefficient

引用本文

导出引用
汪之松1,2,向明1,江水灵1,唐阳红1. 下击暴流作用下大跨平屋面的极值风压分析[J]. 振动与冲击, 2022, 41(11): 83-89
WANG Zhisong1,2, XIANG Ming1, JIANG Shuiling1, TANG Yanghong1. Extreme wind pressure analysis for large-span flat roof under downburst[J]. Journal of Vibration and Shock, 2022, 41(11): 83-89

参考文献

[1] Fujita T T. Manual of downburst identification for project NIMROD[R].SMRP Research Paper 210, University of Chicago, 122[NTIS PB85-148880], 1985.
[2] Letchford C, Mans C, Chay T. Thunderstorms: their importance in wind engineering (a case for the next generation wind tunnel) [J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90( 12) : 1415-1433.
[3] GB 50009-2012.建筑结构荷载规范[S].北京:中国建筑工业出版社, 2012.
GB 50009-2012. Building structure load code [S].Beijing: China Building Industry Press, 2012.
[4] Ye J, Dong X. Wind pressure features of large-span flat roof in different wind fields induced by conical vortex [J]. Journal of the Chinese Institute of Engineers, 2015, 38(8):1-16.
[5] Kumar, K. Suresh, Stathopoulos, T. Wind Loads on Low Building Roofs: A Stochastic Perspective[J]. Journal of Structural Engineering, 2000, 126(8):944-956.
[6] 叶继红,侯信真.大跨屋面脉动风压的非高斯特性研究[J]. 振动与冲击, 2010, 29(7):9-15.
YE Ji-hong, HOU Xin-zhen. Non -Gaussian features of fluctuating wind pressures on long span roofs[J].Journal of Vibration and Shock, 2010, 29(7):9-15.
[7] Massimiliano Gioffrè, Gusella V , Grigoriu M . Non-Gaussian Wind Pressure on Prismatic Buildings. I: Stochastic Field[J]. Journal of Structural Engineering, 2001, 127(9):981-989.
[8] 楼文娟,李进晓,沈国辉,等.超高层建筑脉动风压的非高斯特性[J]. 浙江大学学报:工学版, 2011, 45(004):671-677.
LOU Wen-juan,LI Jin-xiao,SHEN Guo-hui, et al. Non-Gaussian feature of wind-induced pressure on super-tall building[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(004):671-677.
[9] 孙瑛, 武岳,林志兴,等.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报, 2007(04):1-5.
Sun Ying,Wu Yue, Lin Zhi-xing,et al. Non-Gaussian features of fluctuating wind pressures on long span roofs[J]. China Civil Engineering Journal, 2007(04):1-5.
[10] Mason M S, Letchford C W, James D L. Pulsed wall jet simulation of a stationary thunderstorm downburst, Part A: Physical structure and flow field characterization [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(7):557-580.
[11] DAVENPORT A G.Gust loading factors[J].Journal of the Structural Division, 1967, 22 (4): 101-113.
[12] Kareem A, Zhao J, Tognarelli M A. Surge response statistics of tension leg platforms under wind and wave loads: a statistical quadratization approach [J]. Probabilistic Engineering Mechanics, 1995, 10(4):225-240.
[13] Sadek F, Simiu E. Peak Non-Gaussian Wind Effects for Database-Assisted Low-Rise Building Design [J]. Journal of Engineering Mechanics, 2002, 128(5):530-539.
[14] M. F. Huang,  W.J .Lou, X.T Pan , et al. Hermite Extreme Value Estimation of Non-Gaussian Wind Load Process on a Long-Span Roof Structure[J]. Journal of Structural Engineering, 2014, 140(9): 04014061.
[15] Chay M T, Letchford C W. Pressure distributions on a cube in a simulated thunderstorm downburst—Part A: stationary downburst observations [J]. 2002, 90(7):711-732.
[16] Letchford C W, Chay M T. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: moving downburst observations[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(7):733-753.
[17] Chen Y, Liu G G, Sun B N. Dynamic Response of Flat Roofs Subjected to Non-Stationary Moving Microbursts[J]. Engineering Applications of Computational Fluid Mechanics, 2013, 7(4):519-532.
[18] 汪之松,陈圆圆,方智远,等.下击暴流作用下低矮建筑风荷载特性试验[J]. 华中科技大学学报(自然科学版), 2019, 047(009):120-126.
WANG Zhi-song, CHEN Yuan-yuan, FANG Zhi-yuan,et al. Experimental study on wind load characteristics of low-rise buildings under downburst[J].Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 047(009):120-126.
[19] 汪之松,邓骏,方智远,陈圆圆.下击暴流作用下低矮建筑风荷载大涡模拟[J].浙江大学学报:工学版,2020,54(03):512-520.
WANG Zhi-song, DENG Jun, FANG Zhi-yuan, et al. Large eddy simulation of wind load on low-rise buildingssubjected to downburst[J].Journal of Zhejiang University: Engineering Science, 2020,54(03):512-520.
[20] Winterstein, S.R., and MacKenzie, C.A. (2013). “Extremes of nonlinear vibration: Models based on moments, L-moments, and maximum entropy.” J. Offshore Mech. Arctic Eng., 135(2), 021602.
[21] Letchford C W, Illidge G. Turbulence and topographic effects in simulated thunderstorm downdrafts by wind tunnel jet[C]. Proceedings of the Tenth International Conference on Wind Engineering, Denmark, June 1999, 1907-1912.
[22] HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado [J].Journal of Applied Meteorology, 1988, 27(8): 900–927.
[23] Ding J, Xinzhong C. Moment-Based Translation Model for Hardening Non-Gaussian Response Processes [J]. Journal of Engineering Mechanics, 2016, 142(2):06015006.

PDF(2022 KB)

Accesses

Citation

Detail

段落导航
相关文章

/