旋转配流激振阀输出特性分析及实验验证

赵国超1,2,周国强1,王慧1,2,张建卓1,2,李南奇1,3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 90-96.

PDF(2948 KB)
PDF(2948 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (11) : 90-96.
论文

旋转配流激振阀输出特性分析及实验验证

  • 赵国超1,2,周国强1,王慧1,2,张建卓1,2,李南奇1,3
作者信息 +

Output characteristics analysis and test verification for rotary flow-distribution excitation valve

  • ZHAO Guochao1,2, ZHOU Guoqiang1, WANG Hui1,2, ZHANG Jianzhuo1,2, LI Nanqi1,3
Author information +
文章历史 +

摘要

提出一种旋转配流激振阀,为研究进口压力和阀芯换向频率对旋转配流激振阀输出特性的影响规律,采用多参考系方法(Multiple Reference Frame Model,MRF)进行流场动态仿真,获得旋转配流激振阀输出压力和流量的动态特性曲线,并搭建电液激振实验台对仿真结果进行验证。研究结果表明:进口压力由14MPa增至16MPa,旋转配流激振阀输出压力、流量峰值分别提高了1.16%和6.98%;阀芯换向频率由100Hz增至180Hz,输出压力、流量峰值分别降低了1.24%和18.6%;进口压力工况下,输出压力、流量的仿真和实验结果的平均误差分别为0.18%、2.14%;换向频率工况下,输出压力、流量的仿真和实验结果的平均误差分别为0.10%、1.76%。仿真和实验结果整体趋势基本一致,证实了旋转配流激振阀结构的合理性及仿真模型的正确性。

Abstract

A rotary flow-distribution excitation valve was proposed. In order to study the influence of inlet pressure and spool commutation frequency on the output characteristics of the rotary flow-distribution excitation valve, the MRF method was used to simulate the flow field dynamics and the dynamic characteristic curves of the output pressure and flow rate were obtained. And an electro-hydraulic excitation test bench was built to verify the simulation results. The results show that: when the inlet pressure increases from 14MPa to 16MPa, the peak output pressure and flow rate of the rotating flow distribution excitation valve increased by 1.16% and 6.98% respectively; when the spool commutation frequency increases from 100Hz to 180Hz, the peak output pressure and flow rate reduces by 1.24% and 17.5% respectively; when the inlet pressure is the same, the average errors of the simulation and the experimental results of the output pressure and flow rate are 0.18% and 2.14% respectively; when the commutation frequency is the same, the average errors of the simulation and the experimental results of the output pressure and flow rate are 0.10% and 2.71% respectively. The overall trend of simulation and experimental results is basically consistent, which proves the rationality of the structure of the rotating distribution excitation valve and the correctness of the simulation model.

关键词

旋转配流激振阀 / 多参考系模型 / 流场 / 输出特性 / 实验验证

Key words

rotary flow-distribution excitation valve / MRF / flow field / output characteristics / experimental verification

引用本文

导出引用
赵国超1,2,周国强1,王慧1,2,张建卓1,2,李南奇1,3. 旋转配流激振阀输出特性分析及实验验证[J]. 振动与冲击, 2022, 41(11): 90-96
ZHAO Guochao1,2, ZHOU Guoqiang1, WANG Hui1,2, ZHANG Jianzhuo1,2, LI Nanqi1,3. Output characteristics analysis and test verification for rotary flow-distribution excitation valve[J]. Journal of Vibration and Shock, 2022, 41(11): 90-96

参考文献

[1] 徐梓斌, 阮  健. 新型电液激振器特性研究[J]. 中国机械工程, 2009, 20(04):455-460.
XU Zi-bin, RUAN Jian. Research on performance of a new electrohydraulic excitation exciter[J]. China Mechanical Engineering, 2009, 20(4):455-460.
[2] Tamburrano P, Plmmer A R, Distaso E, et al. A review of direct drive proportional electro-hydraulic spool valves: industrial state of-the-art and research advancements [J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(2): 1-14.
[3] Tamburrano P, Plmmer A R, Distaso E, et al. A review of electro-hydraulic servo valve research and development [J]. International Journal of Fluid Power, 2018:1-23.
[4] Cui J, Ding F, Li Q P. Novel bidirectional rotary proportional actuator for electro-hydraulic rotary valves [J]. IEEE Transactions on Magnetics, 2007, 43(7):3254-3258.
[5] Amirante R, Distaso E, Tamburrano P. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation [J]. Energy Conversion and Management, 2016, 119:399-410.
[6] 邢  彤, 左  强, 杨永帅, 等. 液压激振技术的研究进展[J]. 中国机械工程, 2012, 23(03):362-367+377.
XING Tong, ZUO Qiang, YANG Yong-shuai, et al. Progresses of research on hydraulic excitation technology[J]. China Mechanical Engineering, 2012, 23(3):362-367+37.
[7] Liu Y, Cheng S K, Gong G F. Structure characteristics of valve port in the rotation-spool-type electro-hydraulic vibrator[J]. Journal of excitation and Control, 2017, 23(13): 2179-2189.
[8] 闵  为, 王  东, 郑  直,等. 压力调节锥阀开启过程振动特性研究[J]. 振动与冲击, 2020, 39(18):181-187.
MIN Wei, WANG Dong, ZHENG Zhi, et al. Excitation characteristics of a pressure regulating poppet valve during opening process[J].Journal of excitation and shock, 2020, 39(18):181-187.
[9] Wang H, Wang C W, Quan L, et al. Analytical solution to orifice design in a rotary valve controlled electro-hydraulic excitation exciter for high-frequency sinusoidal excitation waveform [J].Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2019, 233 (5):1098-1108.
[10] 李  胜, 阮  健, 孟  彬. 二维电液比例换向阀动态特性及稳定性分析[J]. 机械工程学报, 2016, 52(02):202-212.
LI Sheng, RUAN Jian, MENG Bin. Two-dimensional electro- hydraulie proportional directional valve[J]. Journal of Mechanical Engineering, 2016, 52(2):202-212.
[11] 吴万荣, 龙果锐, 郝前华. 基于格子-大涡理论的高频换向阀压力特性研究[J]. 振动与冲击, 2020, 39(08):202-207.
WU Wan-rong, LONG Guo-rui, HAO Qian-hua. A study on the pressure characteristic curve of a high frequency reversing valve based on the lattice Boltzmann method combined with LES[J]. Journal of excitation and shock, 2020, 39 (08):202- 207.
[12] 袁  鑫, 吴万荣, 郝前华. 基于格子Boltzmann方法的液压激振管道压力冲击的研究[J]. 振动与冲击, 2019, 38(04): 250-257.
YUAN Xin, WU Wan-rong, HAO Qian-hua. Pressure shock of hydraulic excited piping study based on a lattice Boltzmann method[J].Journal of excitation and shock, 2019, 38(04):250- 257.
[13] Ji X C, Ren Y, Tang H S. Analysis on excitation for a high-frequency electro-hydraulic cleaning system controlled by improved two-dimensional rotary valve [J]. Advances in Mechanical Engineering, 2018, 10(12):1-9.
[14] 王  鹤, 龚国芳, 周鸿彬, 等. 基于不同阀口形状的阀芯旋转式电液激振器振动波形研究[J]. 机械工程学报, 2015, 51(24):146-152.
WANG He, GONG Guo-fang, ZHOU Hong-bin, et al. Research on excitation waveform of electro-hydraulic exciter with rotary valve based on different valve port shapes[J]. Journal of Mechanical Engineering,2015,51(24):146-152.
[15] 韩  冬, 龚国芳, 刘  毅, 等. 基于不同阀芯结构的新型电液激振器[J]. 浙江大学学报(工学版), 2014, 48(05):757-763.
HAN Dong, GONG Guo-fang, LIU Yi, et al. New electro- hydraulic Exciter Based on Different Spools[J].Journal of Zhejiang University(Engineering Science), 2014, 48(5): 757- 763.
[16] 刘  毅, 王  登, 郑  堤. 转阀控制式脉冲波生成方法[J].机械工程学报, 2018, 54(20):279-286.
LIU Yi, WANG Deng, ZHENG Di. Pulse wave generation method using rotary valve control[J]. Journal of Mechanical Engineering, 2018, 54(20):279-286.
[17] Zhu M Z, Zhao S D, Li J X, et al. Computational fluid dynamics and experimental analysis on flow rate and torques of a servo direct drive rotary control valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(1):213-226.
[18] 陈志明, 袁剑平, 严  谨, 等. 基于MRF方法和滑移网格的螺旋桨水动力性能研究[J]. 船舶工程, 2020, 42(S1):157- 162+311.
CHEN Zhi-ming, YUAN Jian-ping, YAN Jin, et al. Study on hydrodynamic performance of propeller based on MRF model and sliding mesh[J]. Ship Engineering, 2020, 42 (S1):157- 162+311.
[19] Aung N Z, Yang Q J, Chen M, et al. CFD analysis of flow forces and energy loss characteristics in a flapper-nozzle pilot valve with different null clearances[J]. Energy Conversion & Management, 2014, 83(7):284-295.
[20] 张玉良, 赵燕娟, 汪灿飞, 等. 多级泵首级叶轮瞬时启动特性数值研究[J]. 流体机械,2018, 46(10):22-28.
ZHANG Yu-liang, ZHAO Yan-juan, Wang Can-fei, et al. Numerical study on transient startup characteristics of the first stage impeller of a multistage pump[J]. Fluid Machinery, 2018, 46(10):22-28.
[21] Liu N, Liu Z L, Li Y X, et al. Studies on leakage characteristics and efficiency of a fully-rotary valve energy recovery device by CFD simulation [J]. Desalination, 2017, 415:40-48.

PDF(2948 KB)

203

Accesses

0

Citation

Detail

段落导航
相关文章

/