水下非接触爆炸荷载下某混凝土重力坝损伤预测研究

刘晓蓬1,陈健云2,周晶3,徐强2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 108-116.

PDF(1799 KB)
PDF(1799 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 108-116.
论文

水下非接触爆炸荷载下某混凝土重力坝损伤预测研究

  • 刘晓蓬1,陈健云2,周晶3,徐强2
作者信息 +

A study on damage prediction of a concrete gravity dam under underwater non-contact explosive loads

  • LIU Xiaopeng1,CHEN Jianyun2,ZHOU Jing3,XU Qiang2
Author information +
文章历史 +

摘要

水坝是重要的挡水建筑物,其安全与否直接影响到下游人民的生命财产,溃坝产生的后果不堪设想。本文基于Euler与Lagrange流固耦合算法,并考虑爆炸荷载下混凝土的高应变率效应,运用LSDYNA软件模拟分析了某混凝土重力坝的水下非接触爆炸损伤情况。探讨了受起爆深度、起爆距离和坝前水位与炸药当量影响时,水下非接触爆炸荷载与坝体损伤程度之间的关系,并拟合得到了该坝体的损伤等级预测曲线。通过本文研究得到:起爆深度、起爆距离和坝前水位都是坝体抗爆性能的重要影响因素,上游面损伤位置随起爆深度增加而向坝体底部相应移动,起爆深度越大越不易形成贯穿性损伤,近距离起爆对坝体的损伤更为严重,低水位爆炸能够有效减小坝体损伤以提高坝体的抗爆能力。战争发生时可以采取提前放空库水、防止炸弹入水爆炸和防止炸弹接近坝体等方式使坝体的爆炸冲击损伤降到最低。研究成果能够预测坝体遭受水下非接触爆炸荷载时的损伤程度,为政府决策提供一定依据。

Abstract

Dams are important water-retaining structures. Their safety directly affects the lives and properties of downstream people. Once a dam break occurs, the consequences will be disastrous. Based on the Euler and Lagrange fluid-solid coupling algorithm, underwater non-contact explosion damage of a concrete gravity dam is researched by using LSDYNA software in this paper. High strain rate effect of the concrete is considered. The relationship between underwater non-contact explosive loads and the damage degree of the dam is discussed, which is affected by initiation depths, initiation distances, water level in front of the dam, and explosive equivalent. The prediction curve of dam damage degree is fitted. The study shows that the detonation depth, detonation distance and the degree of water level in front of the dam are all important factors that affect the anti-blast performance of the dam. The damage location on the upstream surface moves to the bottom of the dam as the initiation depth increases. The greater the detonation depth, the more difficult to form penetrating damage. Closed explosions cause more serious damage to the dam. Low-water level explosions can effectively reduce the damage of the dam and improve the dam's anti-blast ability. When a war occurs, some measures should be taken to minimize the impact damage of the dam, such as emptying the reservoir water in advance, preventing the bomb from exploding in water, or preventing the bomb from approaching the dam. The research results can predict the damage degree of the dam subjected to the underwater non-contact explosive loads, providing a certain basis for the government's decision.

关键词

非接触爆炸荷载 / 混凝土重力坝 / 损伤预测 / 流固耦合

Key words

non-contact explosive loads / concrete gravity dam / damage prediction / fluid-solid coupling

引用本文

导出引用
刘晓蓬1,陈健云2,周晶3,徐强2. 水下非接触爆炸荷载下某混凝土重力坝损伤预测研究[J]. 振动与冲击, 2022, 41(12): 108-116
LIU Xiaopeng1,CHEN Jianyun2,ZHOU Jing3,XU Qiang2. A study on damage prediction of a concrete gravity dam under underwater non-contact explosive loads[J]. Journal of Vibration and Shock, 2022, 41(12): 108-116

参考文献

[1] 王高辉. 极端荷载作用下混凝土重力坝的动态响应行为和损伤机理[D]. 天津大学, 2014.
WANG Gaohui. Dynamic response and damage mechanism of concrete gravity dams under extreme loadings[D]. Tianjin University, 2014.
[2] Vanadit-Ellis W, Davis L K. Physical modeling of concrete gravity dam vulnerability to explosions[C] //Waterside Security Conference (WSS), 2010 International. IEEE, 2010: 1-11.
[3] Lu L, Li X, Zhou J. Study of Damage to a High Concrete Dam Subjected to Underwater Shock Waves[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2): 337-346.
[4] 王山山, 任青文. 重力坝在冲击荷载作用下破坏模型试验[J]. 水力发电学报, 2010, 29(5): 11-13.
WANG Shanshan, REN Qingwen. Experimental study of the gravity dam damage caused by impact load[J]. Journal of Hydroelectric Engineering, 2010, 29(5): 11-13.
[5] 李鸿波, 张我华, 陈云敏. 爆炸冲击荷载作用下重力坝三维各向异性脆性动力损伤有限元分析[J]. 岩石力学与工程学报, 2006(8): 1598-1605.
LI Hongbo, ZHANG Wohua, CHEN Yunmin. 3D finite element analysis of anisotropic brittle dynamic damage in gravity dam under blast-impact load[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(8): 1598-1605.
[6] 徐俊祥, 刘西拉. 水中爆炸冲击下混凝土坝动力响应的全耦合分析[J]. 上海交通大学学报, 2008(6): 1001-1004.
XU Junxiang, LIU Xila. Full coupled simulation of concrete dams subjected to underwater explosion[J]. Journal of Shanghai Jiaotong University, 2008(6): 1001-1004.
[7] 潘超. 关于砼重力坝在爆炸冲击作用下的仿真分析[D]. 武汉大学, 2005.
PAN Chao. The simulation analysis about the concrete gravity dam under detonation[D]. Wuhan University, 2005.
[8] 张甲文, 孟会林, 卢江仁. 混凝土重力坝在侵彻及爆炸加载下的仿真分析[J]. 弹箭与制导学报, 2008(3): 126-130.
ZHANG Jiawen, MENG Huilin, LU Jiangren. Simulation analysis for concrete gravity dam under penetration and explosion[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008(3): 126-130.
[9] 李本平. 制导炸弹连续打击下混凝土重力坝的破坏效应[J]. 爆炸与冲击, 2010, 30(2): 220-224.
LI Benping. Damage effect of a concrete gravity dam under continuous attacks of guided bombs[J]. Explosion and Shock Waves, 2010, 30(2): 220-224.
[10] Yu T. Dynamical response simulation of concrete dam subjected to underwater contact explosion load[C]// 2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles:IEEE, 2009.
[11] Linsbauer H. Hazard potential of zones of weakness in gravity dams under impact loading conditions[J]. Frontiers of Architecture and Civil Engineering in China, 2011, 5(1): 90-97.
[12] 张启灵, 李端有, 李波. 水下爆炸冲击作用下重力坝的损伤发展及破坏模式[J]. 爆炸与冲击, 2012, 32(6): 609-615.
ZHANG Qiling, LI Duanyou, LI Bo. Damage propagation and failure mode of gravity dam subiected to underwater explosion[J]. Explosion and Shock Waves, 2012, 32(6): 609-615.
[13] 王冰玲, 刘军. 爆炸载荷下混凝土坝溃坝过程的连续仿真[J]. 系统仿真学报, 2014, 26(1): 159-162.
WANG Bingling, LIU Jun. Numerical simulation of process of concrete dam-break under explosive loading[J]. Journal of System Simulation, 2014, 26(1): 159-162.
[14] 张社荣, 王高辉. 水下爆炸冲击荷载下混凝土重力坝的抗爆性能[J]. 爆炸与冲击, 2013, 33(3): 255-262.
ZHANG Sherong, WANG Gaohui. Antiknock performance of concrete gravity dam subiected to underwater explosion[J]. Explosion and Shock Waves, 2013, 33(3): 255-262.
[15] 赵小华, 王高辉, 卢文波, 陈明, 严鹏. 混凝土重力坝含孔口坝段在水下爆炸荷载作用下的毁伤特性[J]. 振动与冲击, 2016, 35(22): 101-107.
ZHAO Xiaohua, WANG Gaohui, LU Wenbo, CHEN Ming, YAN Peng. Damage characteristics of concrete gravity dams with orifices subjected to underwater explosion[J]. Journal of Vibration and Shock, 2016, 35(22): 101-107.
[16] Li Q, Wang G, Lu W, et al. Failure modes and effect analysis of concrete gravity dams subjected to underwater contact explosion considering the hydrostatic pressure[J]. Engineering Failure Analysis, 2018, 85: 62-76.
[17] Lu L, Xin L, Zhou J, et al. Numerical simulation of shock response and dynamic fracture of a concrete dam subjected to impact load[J]. Earth Sciences Research Journal, 2016, 20(1): 1-6.
[18] 王超, 闫玮烁, 韩君格. 爆炸荷载统计模型下重力坝动力响应随机分析[J]. 中国安全科学学报, 2017, 27(6): 85-90.
WANG Chao, YAN Weishuo, HAN Junge. Stochastic analysis of dynamic response of concrete gravity dam using statistical model of blast load[J]. China Safety Science Journal, 2017, 27(6): 85-90.
[19] 徐强, 陈健云, 刘静, 李静, 曹阳. 不同坝型重力坝水下接触爆炸特性研究[J]. 工程科学与技术, 2017, 49(1): 50-59.
XU Qiang, CHEN Jianyun, LIU Jing, LI Jing, CAO Yang. Characteristics of different kinds of concrete gravity dam under water contact explosion[J]. Advanced Engineering Sciences, 2017, 49(1): 50-59.
[20] 王思, 胡晶, 张雪东, 任晓丹, 陈祖煜, 张紫涛. 不同水深水下爆炸数值及离心试验研究[J]. 哈尔滨工业大学学报, 2020, 52(6): 78-84.
WANG Si, HU Jing, ZHANG Xuedong, REN Xiaodan, CHEN Zuyu, ZHANG Zitao. Numerical analysis and centrifugal test of underwater explosion effect at different water depths[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 78-84.
[21] 蒋云怒, 胡安奎, 刘伯相, 杨泽江. 爆炸冲击下重力坝不确定性动态响应研究[J]. 水力发电, 2020, 46(8): 53-58.
JIANG Yunnu, HU Ankui, LIU Boxiang, YANG Zejiang. Study on uncertain dynamic response of gravity dam under blast impact[J]. Water Power, 2020, 46(8): 53-58.
[22] 周清,齐麟.LS-DYNA软件中5种常用抗爆混凝土材料模型的分析与比较[J].混凝土,2019(11):43-49.
ZHOU Qing QI Lin. Analysis and comparison of 5 different common anti-explosion concrete material models of LS-DYNA software[J]. Concrete,2019(11):43-49.
[23] 汪维,张舵,卢芳云,汤福静,王松川.方形钢筋混凝土板的近场抗爆性能[J].爆炸与冲击,2012,32(03):251-258.
WANG Wei, ZHANG Duo, LU Fangyun, TANG Fujing, WANG Songchuan. Anti-explosion performances of square reinforced concrete slabs under close-in explosions[J]. Explosion and Shock Waves,2012,32(03):251-258.
[24] Tu Z, Lu Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations[J]. International Journal of Impact Engineering, 2009, 36(1): 132-146.
[25] 徐强, 曹阳, 陈健云. 接触爆炸荷载作用下溢流坝的抗爆性能[J]. 爆炸与冲击, 2017, 37(4): 677-684.
XU Qiang, CAO Yang, CHEN Jianyun. Antiknock performance of an overflow dam subjected to contact explosion[J]. Explosion and Shock Waves, 2017, 37(4): 677-684.
[26] 刘晓蓬. 爆炸荷载和地震作用下混凝土坝动力破坏及防护措施研究[D]. 大连理工大学, 2018.
LIU Xiaopeng. Research on dynamic damage and protective measures of concrete dam under explosive load and earthquake[D]. Dalian University of Technology, 2018.
[27] Zhou, X. Q, Hao H. Numerical prediction of reinforced concrete exterior wall response to blast loading[J]. Advances in Structural Engineering, 2008, 11(4): 355-367.

PDF(1799 KB)

Accesses

Citation

Detail

段落导航
相关文章

/