基于波叠加法近场声全息的一种组合型射线波函数法

陈岩豪1,2,石梓玉1,向宇1,2,陆静1,2,王玉江1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 125-135.

PDF(2927 KB)
PDF(2927 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 125-135.
论文

基于波叠加法近场声全息的一种组合型射线波函数法

  • 陈岩豪1,2,石梓玉1,向宇1,2,陆静1,2,王玉江1,2
作者信息 +

A combined ray wave function method for near-field acoustic holography based on the wave superposition method

  • CHEN Yanhao1,2,SHI Ziyu1,XIANG Yu1,2,LU Jing1,2,WANG Yujiang1,2
Author information +
文章历史 +

摘要

在传统基于波叠加法的近场声全息技术中,单极子等效源所辐射的球面形式波函数极易导致传递矩阵因强线性相关性而病态。利用指向性射线波函数替换球面波函数可使传递矩阵趋于主对角占优,有效提高重建稳定性。然而,以往的格林函数方向导数型射线波函数是一种指向性强度随着求导阶数离散变化的离散型射线波函数,无法得到针对不同重建模型的最优指向性强度,一定程度上影响了声场的重建精度和稳定性,甚至可能导致重建失败。针对该问题,本文构造了一种由0阶射线波函数和m阶射线波函数构成的组合型射线波函数,并结合辅助点法和遗传算法提出了一种选择组合参数的方法。最后,利用球面活塞声源、随机点声源以及简支板声源验证了组合型射线波函数在声场重建中的有效性。计算结果表明:由于组合型射线波函数可以通过组合参数灵活调节射线波函数的指向性强度,改善了离散型射线波函数的缺陷,其重建精度和稳定性均优于离散型射线波函数。而且,通过选择合适的组合参数,在离散型射线波函数完全失效的情况下,组合型射线波函数仍可获得较理想的重建结果。

Abstract

In the traditional near-field acoustic holography technology based on the wave superposition method, the spherical wave function radiated by the monopole equivalent source can easily cause the transfer matrix to be ill-conditioned due to the strong linear correlation. By using the directional ray wave function to replace the spherical wave function, the transfer matrix tends to be dominate diagonally and the reconstruction stability is effectively improved. However, the existing directional derivative ray wave function of Green's function is a discrete  function whose directivity varies with the order of derivation. It is impossible to obtain the optimal directivity for different reconstruction models, which affects the reconstruction accuracy and stability of the sound field to a certain extent, even leads to reconstruction failure. To solve this problem, a combined ray wave function composed of 0-order ray wave function and m-order ray wave function is constructed, and the method of selecting the combined parameter is also proposed by combining auxiliary point method and genetic algorithm. Finally, the effectiveness of the combined ray wave function in sound field reconstruction is verified by using spherical piston sound source 、random point sound source and simply supported plate sound source. The results show that, the reconstruction accuracy and stability of the combined ray wave function are better than those of discrete ray wave function. Since the combined ray wave function can flexibly adjust the directivity of ray wave function with different combining parameters, it improves the defect of discrete ray wave function. Moreover, by selecting appropriate combination parameters, the combination ray wave function can still obtain ideal reconstruction results when the discrete ray wave function is completely invalid.

关键词

近场声全息 / 波叠加法 / 病态性 / 组合型射线波函数

Key words

Near-field acoustic holography / Wave superposition method / Reconstruction stability / Combined ray wave function

引用本文

导出引用
陈岩豪1,2,石梓玉1,向宇1,2,陆静1,2,王玉江1,2. 基于波叠加法近场声全息的一种组合型射线波函数法[J]. 振动与冲击, 2022, 41(12): 125-135
CHEN Yanhao1,2,SHI Ziyu1,XIANG Yu1,2,LU Jing1,2,WANG Yujiang1,2. A combined ray wave function method for near-field acoustic holography based on the wave superposition method[J]. Journal of Vibration and Shock, 2022, 41(12): 125-135

参考文献

[1] KOOPMANN G, SONG L, FAHNLINE J. A method for computing acoustic fields based on the principle of wave superposition [J]. Journal of the Acoustical Society of America, 1989, 86(6): 2433-2438.
[2] HE T, HUMPHREY V F, MO S, et al. Three-dimensional sound scattering from transversely symmetric surface waves in deep and shallow water using the equivalent source method[J]. Journal of the Acoustical Society of America, 2020, 148(1):73-84.
[3] ZAN M, XU Z, HUANG L, et al. A sound source identification algorithm based on bayesian compressive sensing and equivalent source method[J]. Sensors, 2020, 20(3): 865.
[4] JING W Q, WU H, NIE J Q. Optimization of equivalent source configuration for an independent-equivalent source method in half-space sound field[J]. Shock and Vibration, 2020:1-9.
[5] TAN D, CHU Z, WU G. Robust reconstruction of equivalent source method based near-field acoustic holography using an alternative regularization parameter determination approach[J]. Journal of the Acoustical Society of America, 2019, 146(1):EL34-EL38.
[6] VALDIVIA N P. Advanced equivalent source methodologies for near-field acoustic holography[J]. Journal of Sound and Vibration, 2018, 438:66-82.
[7] OCHMANN M. The source simulation technique for acoustic radiation problems[J]. Acta Acustica United with Acustica, 1995, 81(6): 512-527.
[8] OCHMANN M. The full-field equations for acoustic radiation and scattering[J]. Journal of the Acoustical Society of America, 1999, 105(5): 2574-2584.
[9] VALDIVIA N, WILLIAMS E. Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography [J]. Journal of the Acoustical Society of America, 2006, 120(6): 3694-3705.
[10] GOMES J, HALD J, JUHL P, et al. On the applicability of the spherical wave expansion with a single origin for near-field acoustical holography [J]. Journal of the Acoustical Society of America, 2009, 125(3): 1529-1537.
[11] SARKISSIAN A. Method of superposition applied to patch near-field acoustic holography [J]. Journal of the Acoustical Society of America, 2005, 118(2): 671-678.
[12] BAI M, CHEN C-C, JIA HONG L. On optimal retreat distance of equivalent source method-based near-field acoustical holography [J]. Journal of the Acoustical Society of America, 2011, 129(3): 1407-1416.
[13] GOUNOT Y, MUSAFIR R. On appropriate equivalent monopole sets for rigid body scattering problems [J]. Journal of the Acoustical Society of America, 2008, 122(6): 3195-3205.
[14] GOUNOT Y, MUSAFIR R. Genetic algorithms: A global search tool to find optimal equivalent source sets [J]. Journal of Sound and Vibration, 2009, 322(1-2): 282-298.
[15] GOUNOT Y, MUSAFIR R. Simulation of scattered fields: Some guidelines for the equivalent source method [J]. Journal of Sound and Vibration, 2011, 330(15): 3698-3709.
[16] WU S, XIANG Y. Location optimization of monopole equivalent sources in wave superposition method [J]. The International Journal of Acoustics and Vibration, 2018, 23(2): 254-263.
[17] LEE S. Review: The use of equivalent source method in computational acoustics[J]. Journal of Computational Acoustics, 2017, 25(1): 1630001.
[18] 向宇, 石梓玉, 陆静, 等. 基于波叠加法的非共形近场声全息波函数的构造与选择[J]. 振动与冲击, 2020, 39(15): 183-192.
XIANG Yu, SHI Ziyu, LU Jing, et al. Construction and selection of nonconformal near-field acoustic holography wave function based on wave superposition method[J]. Journal of Vibration and Shock, 2020, 39(15): 183-192.
[19] 石梓玉, 向宇, 陆静, 等. 一种提高声场重构稳定性的射线等效源法[J]. 广西科技大学学报, 2019, 30(3): 1-7+21.
SHI Ziyu, XIANG Yu, LU Jing, et al. A ray equivalent source method for improving the stability of acoustic field reconstruction[J]. Journal of Guangxi University of Science and Technology, 2019, 30(3): 1-7+21.
[20] 陈心昭, 毕传兴等. 近场声全息技术及其应用[M]. 北京: 科学出版社, 2013.
[21] 于飞. 基于波叠加方法的声全息技术与声学灵敏度分析[D]. 合肥: 合肥工业大学, 2005.
[22] SONG L, KOOPMANN G H, FAHNLINE J B. Numerical errors associated with the method of superposition for computing acoustic fields [J]. Journal of the Acoustical Society of America, 1991, 89(6): 2625-2633.
[23] Williams, Earl G. Regularization methods for near-field acoustical holography[J]. Journal of the Acoustical Society of America, 2001, 110(4): 1976-1988.
[24] 毕传兴, 陈心昭, 陈剑, 等. 正交球面波源边界点法及其在声全息中的应用[J]. 科学通报, 2004(13): 106-115.
BI Chuanxing, CHEN Xinzhao, CHEN Jian, et al. Orthogonal spherical wave source boundary point method and its application to acoustic holography[J]. Chinese Science Bulletin, 2004(16): 1758-1767.
[25] 李兵, 杨殿阁, 郑四发, 等. 基于遗传算法的动态优化波叠加噪声源识别方法[J]. 机械工程学报, 2010, 46(12): 99-105+112.
LI Bing, YANG Diange, ZHENG Sifa, et al. Sound source ldentification method with dynamic optimal wave superposition algorithm based on genetic algorithm[J]. Journal of Mechanical Engineering, 2010, 46(12): 99-105+112.
[26] 孙志强, 白圣建, 郑永斌. 最优化导论[M]. 北京: 电子工业出版社. 2015.
[27] KIRKUP S M , HENWOOD D J. Methods for speeding up the Boundary Element Solution of Acoustic Radiation Problems[J]. Journal of Vibration and Acoustics, 1992, 114(3): 374-380.
[28] 杜向华, 朱海潮, 毛荣富, 等. 基于支持向量回归的patch近场声全息研究[J]. 声学学报, 2012, 37(3): 286-293.
DU Xianghua, ZHU Haichao, MAO Rongfu, et al. Patch  near-field acoustic holography based on support vector regression[J]. Acta Acoustics, 2012, 37(3): 286-293.
[29] Williams E.G. Fourier acoustics sound radiation and nearfield acoustical holography[M]. Academic Press, 1999, 34-37.

PDF(2927 KB)

224

Accesses

0

Citation

Detail

段落导航
相关文章

/