一般边界条件下受轴向冲击圆柱壳的动力特性计算分析

桂夷斐1,辛绍杰1,马建敏2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 143-151.

PDF(3540 KB)
PDF(3540 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 143-151.
论文

一般边界条件下受轴向冲击圆柱壳的动力特性计算分析

  • 桂夷斐1,辛绍杰1,马建敏2
作者信息 +

Dynamic characteristics calculation and analysis of axially impacted circular cylindrical shells with general boundary conditions

  • GUI Yifei1,XIN Shaojie1,MA Jianmin2
Author information +
文章历史 +

摘要

本文在受轴向冲击圆柱壳的非冲击端引入轴向、周向、径向和径向旋转四个方向边界弹簧模拟一般边界条件。根据Love薄壳理论得到圆柱壳变形过程中的应力应变,并采用一种改进的Fourier级数方法表示圆柱壳沿坐标轴方向的位移。将应力应变以及位移代入圆柱壳的能量表达式,采用基于Hamilton方程的一阶变分法对能量表达式进行推导和变换,得到一般边界条件下受轴向冲击圆柱壳的自然频率以及动力屈曲临界载荷的判别式。计算分析了一般边界条件对受轴向冲击圆柱壳的自然频率和屈曲临界载荷的影响,以及不同边界条件圆柱壳屈曲模态的类型特点。结果表明:一般边界条件下自然频率随着冲击载荷增大而降低;随着轴向波数的增加圆柱壳自然频率及屈曲临界载荷增大,随着周向波数的增加屈曲临界载荷也增大;轴向、周向、径向和径向旋转各个方向边界刚度对圆柱壳自然频率和屈曲临界载荷的影响都是:刚度系数越小,自然频率越低而临界载荷越大;圆柱壳受轴向冲击,边界条件的改变会影响屈曲模态。

Abstract

Four kinds of springs are introduced at the non-impact end of an axially impacted cylindrical shell to simulate general boundary conditions. These are linear springs distributed along the axial, circumferential, radial directions, respectively, and rotational springs distributed along the radial direction. To study the dynamic characteristics of axially impacted cylindrical shells with general boundary conditions, firstly, the stress and the strain of a cylindrical shell during deformation are obtained based on Love thin shell theory. The displacements of the cylindrical shell are expressed in the form of improved Fourier series. Secondly, the stress, strain and displacements of the cylindrical shell are substituted into energy expression. The energy expression is derived and transformed using first-order variational method which is on the basis of Hamilton equation. Discriminant about natural frequency and critical buckling load is achieved. Finally, the effects of general boundary conditions on the natural frequency and the critical buckling load are calculated. Several numerical examples reveal that the natural frequency decreases with increasing the impact load. The natural frequency and the critical buckling load increase with increasing the axial wave number, and the critical buckling load increases with increasing the circumferential wave number. The lower the stiffnesses of four kinds of springs are, the lower the natural frequency and the higher the critical buckling load will be. Under axial impact, the change of boundary conidtions will affect buckling modal shapes.

关键词

弹性圆柱壳 / 一般边界条件 / 轴向冲击 / 能量方法 / 动力特性

Key words

elastic cylindrical shell / general boundary conditions / axial impact / energy method / dynamic characteristics

引用本文

导出引用
桂夷斐1,辛绍杰1,马建敏2. 一般边界条件下受轴向冲击圆柱壳的动力特性计算分析[J]. 振动与冲击, 2022, 41(12): 143-151
GUI Yifei1,XIN Shaojie1,MA Jianmin2. Dynamic characteristics calculation and analysis of axially impacted circular cylindrical shells with general boundary conditions[J]. Journal of Vibration and Shock, 2022, 41(12): 143-151

参考文献

[1] Ohira H. Local buckling theory of axially compressed cylinders[C]. // Proceedings of the 11th Japan National Congress for Applied Mechanics, (1961): 37–41.
[2] Stein M. The effect on the buckling of perfect cylinders of prebuckling deformations and stressed induced by edge support[C]. // Collected Papers on Instability of Shell Structures, (1962): 217–226.
[3] Hoff N J. Low buckling stresses of axially compressed circular cylindrical shells of finite length[J]. Journal of Applied Mechanics, 1965 (32): 533–541.
[4] Gordienko B A. Buckling of inelastic cylindrical shells under axial impact[J]. Archives of Mechanics, 1972, (24): 383-394.
[5] Xu X S, Ma Y, Lim C W, et al. Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system[J]. International Journal of Solids and Structures, 2006, 43(13):3905-3919.
[6] Xu X S, Chu H J, Lim C W. Hamiltonian system for dynamic buckling of transversely isotropic cylindrical shells subjected to an axial impact[J]. International Journal of Structural Stability & Dynamics, 2008, 8(3):487-504.
[7] Xu X S, Ma J Q, Lim C W, et al. Dynamic local and global buckling of cylindrical shells under axial impact[J]. Engineering Structures, 2009, 31(5): 1132-1140.
[8] Sun J B, Xu X S, Lim C W. Localization of dynamic buckling patterns of cylindrical shells under axial impact[J]. International Journal of Mechanical Sciences, 2013, 66:101-108.
[9] Karagiozova D, Jones N. Dynamic elastic-plastic buckling of circular cylindrical shells under axial impact[J]. International Journal of Solids and Structures, 2000, 37(14): 2005-2034.
[10] Karagiozova D, Jones N. Influence of stress waves on the dynamic progressive and dynamic plastic buckling of cylindrical shells[J]. 2001, 38(38-39): 6723-6749.
[11] Han Z J, Ma H W, Zhang S Y. Dynamic Buckling of Circular Cylindrical Shells Subject to a Rigid Body Impact[J]. Key Engineering Materials, 2004, 274-276: 961-964.
[12]桂夷斐, 马建敏. 阶梯圆柱壳在轴向冲击载荷作用下的屈曲计算分析[J]. 振动与冲击, 2019, 38(01):208-213+236.
    Gui Y F, Ma J M. Buckling of step cylindrical shells under axial impact load[J]. Journal of vibration and shock, 2019, 38(01): 208-213+236.
[13] 桂夷斐, 马建敏. 弹性介质中受轴向冲击载荷作用的圆柱壳的屈曲临界载荷计算分析[J]. 应用数学和力学, 2020, 41(4):353-366.
    Gui Y F, Ma J M. Buckling critical load calculation and analysis of axially impacted cylindrical shells embedded in an elastic medium[J]. Applied Mathematics and Mechanics, 2020, 41(4):353-366.
[14] 桂夷斐, 周文君, 马建敏. 阻尼约束的圆柱壳在轴向冲击载荷作用下的屈曲分析[J].应用力学学报, 2020, 37(6).
    Gui Y F, Zhou W J, Ma J M. Buckling analysis of axially impacted cylindrical shells with damping constraint[J]. Chinese Journal of Applied Mechanics, 2020, 37(6).
[15] Mofakhami M R, Toudeshky H H, Hashemi S H. Finite cylinder vibrations with different end boundary conditions[J]. Journal of Sound & Vibration, 2006, 297(1-2):293-314.
[16] Wang C, Lai J C S. Prediction of natural frequencies of finite length circular cylindrical shells[J]. Applied Acoustics, 2000, 59(4):385-400.
[17] Zhang X M, Liu G R, Lam K Y. Vibration analysis of thin cylindrical shells using wave propagation approach[J]. Journal of Sound & Vibration, 2001, 239(3):397-403.
[18] Li X B. A new approach for free vibration analysis of thin circular cylindrical shell[J]. Journal of Sound & Vibration, 2006, 296(1-2):91-98.
[19] Li X B. Study on Free Vibration Analysis of Circular Cylindrical Shells Using Wave Propagation[J]. Journal of Sound and Vibration,2008,311(3):667-682.
[20] Li W L. Free Vibrations of Beams With General Boundary Conditions[J]. Journal of Sound and Vibration, 2000, 237(4):709–725.
[21] Li W L. Vibration analysis of rectangular plates with general elastic boundary supports[J]. Journal of Sound and Vibration, 2004, 273(3):619-635.
[22] Fok L S. Analysis of the buckling of long cylindrical shells embedded in an elastic medium using the energy method[J]. Journal of Strain Analysis for Engineering Design, 2015, 37(5):375-383.
[23] Gui Y F, Xu J X, Ma J M. Dynamic buckling of a cylindrical shell with a general boundary condition under an axial impact[J]. Journal of Applied Mechanics and Technical Physics, 2019, 60(4):712-723.
[24] Dai L, Yang T, Li W L, et al. Dynamic Analysis of Circular Cylindrical Shells With General Boundary Conditions Using Modified Fourier Series Method[J]. Journal of Vibration & Acoustics, 2012, 134(4):041004.

PDF(3540 KB)

Accesses

Citation

Detail

段落导航
相关文章

/