非对称循环加载下燃气轮机叶片材料疲劳寿命预测

李洪松1,刘永葆1,贺星1,杨涛2,殷望添1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 152-158.

PDF(2600 KB)
PDF(2600 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 152-158.
论文

非对称循环加载下燃气轮机叶片材料疲劳寿命预测

  • 李洪松1,刘永葆1,贺星1,杨涛2,殷望添1
作者信息 +

Fatigue life prediction of gas turbine blade materials under asymmetric cyclic loading

  • LI Hongsong1,LIU Yongbao1,HE Xing1,YANG Tao2,YIN Wangtian1
Author information +
文章历史 +

摘要

燃气轮机叶片在实际工作过程中,易受到非对称循环载荷作用而发生疲劳失效。为便于准确地预测非对称循环加载下叶片材料的裂纹萌生及扩展寿命,首先考虑平均应力效应和高应力区的塑性变形影响,对Chaboche模型进行改进,然后将改进的Chaboche模型和Walker裂纹扩展公式相结合,建立了一种非对称循环载荷作用下裂纹萌生及扩展综合寿命模型,并用试验数据进行验证分析。结果表明,该模型预测得到的裂纹萌生寿命、裂纹扩展寿命与试验数据基本吻合,验证了新模型的适用性和准确性,为燃气轮机叶片损伤分析和寿命预测奠定理论基础。

Abstract

Gas turbine blades are susceptible to fatigue failure due to asymmetric cyclic loads in the actual working process. In order to accurately predict the crack initiation and propagation life of the blade material under asymmetric cyclic loading, the Chaboche model was modified by considering the average stress effect and plastic deformation effect in the high-stress zone. Then a comprehensive model was established to predict crack initiation and propagation life under asymmetric cyclic loading by combining the modified Chaboche model with Walker’s crack propagation formula. The test data was used for verification and analysis. The results show that the crack initiation life and crack propagation life predicted by the model are consistent with the test data, which verifies the applicability and accuracy of the new model. The comprehensive model lays a theoretical foundation for the damage analysis and life prediction of blades in gas turbine.

关键词

非对称循环载荷 / 燃气轮机叶片 / 疲劳寿命 / 非线性累积损伤 / 裂纹萌生 / 裂纹扩展

Key words

asymmetrical cyclic load / gas turbine blade / fatigue life / nonlinear cumulative damage / crack initiation / crack propagation

引用本文

导出引用
李洪松1,刘永葆1,贺星1,杨涛2,殷望添1. 非对称循环加载下燃气轮机叶片材料疲劳寿命预测[J]. 振动与冲击, 2022, 41(12): 152-158
LI Hongsong1,LIU Yongbao1,HE Xing1,YANG Tao2,YIN Wangtian1. Fatigue life prediction of gas turbine blade materials under asymmetric cyclic loading[J]. Journal of Vibration and Shock, 2022, 41(12): 152-158

参考文献

[1] 刘庆瑔. 航空发动机钛合金叶片制造技术及失效分析[M]. 北京:航空工业出版社,2018.
[2] 王维民,张旭龙,陈康,等. 大型轴流压气机叶片无键相振动监测与故障预警方法[J]. 振动与冲击,2019,38(23):54-61.
WANG Weimin, ZHANG Xulong, CHEN Kang, et al. Vibration monitoring and fault-warning method for large axial compressor blades without OPR sensor [J]. Journal of Vibration and Shock, 2019, 38(23): 54-61.
[3] 张亚騤,周瑞祥,郭书祥,等. 压气机叶片复合疲劳试验系统的设计及疲劳寿命分析[J]. 航空动力学报,2017,32(12):2880-2887.
ZHANG Yakui, ZHOU Ruixiang, GUO Shuxiang, et al. Design of compound fatigue test system of compressor blade and fatigue life analysis [J]. Journal of Aerospace Power, 2017, 32(12): 2880-2887.
[4] LI Q, PIECHNA J, MÜELLER N. Simulation of fatigue failure in composite axial compressor blades [J]. Materials and Design, 2011, 32(4): 2058-2065.
[5] 杨新华,陈传尧. 疲劳与断裂[M]. 武汉:华中科技大学出版社,2018.
[6] 马剑龙,吴雨晴,吕文春,等. 动态风载作用下叶片疲劳损伤的差异性分析[J]. 振动与冲击,2020,39(4):271-277.
MA Jianlong, WU Yuqing, LÜ Wenchun, et al. Analysis of fatigue damage differences of blades under dynamic wind load [J]. Journal of Vibration and Shock, 2020, 39(4): 271-277.
[7] CHABOCHE J L, LESNE P M. A non-linear continuous fatigue damage model [J]. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(1): 1-17.
[8] 张俊红,刘萌,付曦,等. 复杂载荷作用下压气机叶片疲劳寿命数值分析[J]. 中国机械工程,2017,28(12):1442-1448.
ZHANG Junhong, LIU Meng, FU Xi, et al. Numerical analyses on fatigue life for compressor blades under complex loads [J]. China Mechanical Engineering, 2017, 28(12): 1442-1448.
[9] 付曦,张俊红,寇海军,等. 复杂载荷下轴流压气机叶片疲劳损伤数值研究[J]. 西安交通大学学报,2017,51(5):149-155.
FU Xi, ZHANG Junhong, KOU Haijun, et al. Numerical study on the fatigue damage of compressor blade under complex loads [J]. Journal of Xi’an Jiaotong University, 2017, 51(5): 149-155.
[10] FU X, ZHANG J H, LIN J W. Study on the fatigue life and damage accumulation of a compressor blade based on a modified nonlinear damage model [J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 41(5): 1077-1088.
[11] PARIS P, ERDOGAN F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering, 1963, 85(4): 528-533.
[12] 刘德俊,谢芳,杨正伟. 拉—拉疲劳下15MnMoVN多裂纹扩展研究[J]. 振动与冲击,2020,39(3):168-177.
LIU Dejun, XIE Fang, YANG Zhengwei. Multi-crack propagation of 15MnMoVN steel under tensile fatigue [J]. Journal of Vibration and Shock, 2020, 39(3): 168-177.
[13] 马一江,陈国平. 不同温度下裂纹悬臂梁的模态和疲劳寿命分析[J]. 振动与冲击,2017,36(8):132-137.
MA Yijiang, CHEN Guoping. Modal and fatigue life analysis of a cracked cantilever beam under different temperatures [J]. Journal of Vibration and Shock, 2017, 36(8): 132-137.
[14] WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [C]// The Effects of Environment and Complex Load History on Fatigue. West Conshohocken, ASTM STP, 1970: 1-14.
[15] FORMAN R G, SHIVAKUMAR V, NEWMAN JR J C. Fatigue crack growth computer program “NASA/FLAGRO” Version 2.0, Johnson Space Center Report JSC-22267A [R]. Houston: NASA, 1994.
[16] BARLOW K W, CHANDRA R. Fatigue crack propagation simulation in an aircraft engine fan blade attachment [J]. International Journal of Fatigue, 2005, 27:1661-1668.
[17] HADDAD EL M H, TOPPER T H, SMITH K N. Prediction of non propagating cracks [J]. Engineering Fracture Mechanics, 1979, 11: 573-584.
[18] MCCLUNG R C, BHAMIDIPATI V. An investigation of small-crack effects in various aircraft engine rotor materials [J]. Materials at High Temperatures, 2016, 33(4-5): 452-464.
[19] PUGNO N, CIAVARELLA M, CORNETTI P, et al. A generalized Paris’ law for fatigue crack growth [J]. Journal of the Mechanics and Physics of Solids, 2006, 54: 1333-1349.
[20] 殷之平,黄其青. SN-Paris全寿命综合模型[J]. 西北工业大学学报,2007,25(3):327-330.
YIN Zhiping, HUANG Qiqing. Improving Pugno’s generalized Paris’ law and applying it to calculate whole fatigue life of structure [J]. Journal of Northwestern Polytechnical University, 2007, 25(3): 327-330.
[21] 张俊红,杨硕,林杰威,等.考虑分级加载的连续非线性Chaboche-Paris全寿命模型[J].机械工程学报,2014,50(2):187-192.
ZHANG Junhong, YANG Shuo, LIN Jiewei, et al. Chaboche-Paris full-life prediction model considering multi-level loading and non-linear continuum damage [J]. Journal of Mechanical Engineering, 2014, 50(2): 187-192.
[22] CHABOCHE J L. Continuum damage mechanics:Part II—damage growth, crack initiation, and crack growth [J]. Journal of Applied Mechanics, 1988, 55(1): 65-72.
[23] 吴学仁. 飞机结构金属材料力学性能手册(第1卷)[M]. 北京:航空工业出版社,1996.
[24] 杨硕. 涡扇发动机高压压气机叶片裂纹萌生及扩展寿命预测研究[D]. 天津:天津大学,2015.
YANG Shuo. Research on crack initiation and propagation life prediction of turbofan engine high pressure compressor blade [D]. Tianjin:Tianjin University,2015.
[25] 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册(第五册)[M]. 北京:航空工业出版社,2014.
[26] HU X T, ZHU L, JIANG R, et al. Small fatigue crack growth behavior of titanium alloy TC4 at different stress ratios [J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42: 339-351.
[27] 吴学仁. 飞机结构金属材料力学性能手册(第2卷)[M]. 北京:航空工业出版社,1996.

PDF(2600 KB)

367

Accesses

0

Citation

Detail

段落导航
相关文章

/