结构声学耦合随机性分析的等几何有限元-边界元法研究

胡昊文1,2,王中王1,2,徐延明2,陈磊磊1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 159-167.

PDF(1455 KB)
PDF(1455 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 159-167.
论文

结构声学耦合随机性分析的等几何有限元-边界元法研究

  • 胡昊文1,2,王中王1,2,徐延明2,陈磊磊1,2
作者信息 +

A study on the isogeometric finite element-boundary element method for the stochastic analysis of structural acoustic coupling

  • HU Haowen1,2,WANG Zhongwang1,2,XU Yanming2,CHEN Leilei1,2
Author information +
文章历史 +

摘要

采用有限元法(FEM)进行水下壳结构振动响应分析,边界元法(BEM)进行结构振动声学分析;组合有限元法与边界元法构成耦合FEM-BEM方法进行水下薄壳结构声振强耦合分析。为了克服传统拉格朗日函数近似几何模型与物理场插值计算时的不连续与低精度问题,采用Loop细分曲面等几何法构建几何模型,并采用相同的样条函数进行物理场高阶插值计算,实现水下声振强耦合系统的CAD/CAE的集成分析。随机性分析致力于研究系统输入的不确定造成的输出不确定。蒙特卡罗模拟(MCs)以其简单、直接被认为是解决复杂多维不确定性问题的通用工具,然而巨大的计算成本降低了其适用性。采用本征正交分解(POD)和径向基函数(RBF)可降低计算成本,提高计算效率,实现基于MCs的快速随机性分析。考虑结构材料属性参数以及结构形状参数的不确定性对计算结果的影响,采用MCs分析随机变量下的结构声学响应的统计特征。最后通过若干算例验证本文算法的正确性与有效性。

Abstract

The finite element method (FEM) is used to analyze the vibration response of underwater shell structures, and the boundary element method (BEM) is used to analyze structural vibration acoustically. By combining FEM and BEM, the coupled FEM-BEM method is used for the acoustic-vibration strong coupling analysis of underwater thin shell structures. In order to overcome the problems of discontinuity and low precision in the traditional Lagrangian approximate geometric model and physical field interpolation calculation, the Loop subdivision surface isogeometric method is used to construct the geometric model, and the same spline function is used to perform the high-order interpolation calculation of the physical field, so as to realize the integrated CAD/CAE analysis of the underwater acoustic-vibration strong coupling system. Stochastic analysis is devoted to studying the output uncertainty caused by the input uncertainty of the system. Monte Carlo simulation(MCs) is considered to be a universal tool for solving complex and multi-dimensional uncertain problems because of its simplicity and directness. However, the huge computational cost reduces its applicability. Using proper orthogonal decomposition (POD) and radial basis function (RBF) can reduce computational cost, improve computational efficiency, and realize fast stochastic analysis based on Monte Carlo simulation (MCs). Considering the influence of the uncertainty of the structural material property parameters and the structural shape parameters on the calculation results, Monte Carlo simulation is used to analyze the statistical characteristics of  the structural acoustic response under random variables. Finally, several practical problems are used to verify the correctness and effectiveness of this algorithm.
 

关键词

有限元-边界元法 / 细分曲面 / 蒙特卡罗模拟 / 本征正交分解 / 径向基函数

Key words

Finite element-Boundary element method / Subdivision surface / Monte Carlo simulation;   / Proper orthogonal decomposition / Radial basis function

引用本文

导出引用
胡昊文1,2,王中王1,2,徐延明2,陈磊磊1,2. 结构声学耦合随机性分析的等几何有限元-边界元法研究[J]. 振动与冲击, 2022, 41(12): 159-167
HU Haowen1,2,WANG Zhongwang1,2,XU Yanming2,CHEN Leilei1,2. A study on the isogeometric finite element-boundary element method for the stochastic analysis of structural acoustic coupling[J]. Journal of Vibration and Shock, 2022, 41(12): 159-167

参考文献

[1]   Hurtado J E , Barbat A H . Monte Carlo techniques in computational stochastic mechanics[J]. Archives of Computational Methods in Engineering, 1998, 5(1):3-30.
[2]   丁明, 李生虎, 黄凯. 基于蒙特卡罗模拟的概率潮流计算[J].电网技术,2001,25(011):10-14,22.
Ding Ming,Li Sheng-hu,Huang Kai.Probabilistic power flow calculation based on Monte Carlo simulation[J]. Power System Technology,2001, 25(011):10-14,22.
[3]   Hammersley JM. Monte carlo methods for solving multivariable problems[J]. Annals of the New York Academy of Sciences, 2010,86:844–874.
[4]   Ma Fengjie, Zhang Shiwei, Krakauer H. Excited state calculations in solids by auxiliary-field quantum Monte Carlo[J]. New Journal of Physics, 2013, 15(9):93017-93017.
[5]   Ding Chensen, Deokar RR, Cui Xiangyang, et al. Proper orthogonal decomposition and Monte Carlo based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties[J]. Computational Mechanics, 2018:1-13.
[6]   Doucet A, Godsill SJ, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3):197-208.
[7]   姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010: 101-155.
Yao Zhenghan, Wang Haitao. Boundary element methods [M]. Beijing: Higher Education Press, 2010: 101-150. (in Chinese))
[8]   李聪、牛忠荣、胡宗军,等. 三维切口/裂纹结构的扩展边界元法分析[J]. 力学学报, 2020, 52(05):177-191.(Li Cong, Niu Zhongrong,Hu Zongjun,et al. Analysis of 3-D notched/cracked structures by using extended boundary element method[J]. Chinese Journal of Theoretical and applied Mechanics.2020, 52(05):177-191.)
[9]   Everstine, Gordon C. Coupled finite element/boundary element ap-proach for fluid-structure interaction[J]. Journal of the Acoustical Society ofAmerica, 1998,87(5):1938–1947.
[10]   Zheng Changjun, Zhang Chuangzeng, Bi Chuanxing, et al. Coupled FE-BE method for eigen-value analysis of elastic structures submerged in an infinite fluid domain[J]. International Journal for Numerical Methods in Engineering, 2017,110(2):163–185.
[11]   陈磊磊, 胡昊文, 张伟,等. 水下结构振动特征值分析的有限元-边界元法研究[J].船舶力学, 24(9):1196-1204,2020.
Chen Lei-lei,Hu Hao-wen,Zhang Wei,et al. Coupled FE-BE method for the eigenanalysisof submerged structures[J]. Journal of Ship Mechanic, 24(9):1196-1204,2020.
[12]   Chen Leilei, Zheng Changjun, Chen Haibo. FEM/wideband FMBEM coupling forstructural–acoustic design sensitivity analysis[J]. Computer Methods in Applied Mechanics Engineering, 2014,276:1–19.
[13]   Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer methods in applied mechanics and engineering, 2005,194(39-41): 4135-4195.
[14]   Sun Deyong, Dong Chunying. Shape optimization of heterogeneous materials based on isogeometric boundary element method[J]. Computer Methods in Applied Mechanics and Engineering,2020, 370:113-279.
[15]   Yu Bo, Cao Geyong, Huo Wendong, et al. Isogeometric dual reciprocity boundary element method for solving transient heat conduction problems with heat sources[J]. Journal of Computational and Applied Mathematics, 2020,385:113-197.
[16]   Zhang Jianming, Lin Weicheng, Dong Yunqiao. A double-layer interpolation method for implementation of BEM analysis of problems in potential theory[J]. Applied Mathematical Modelling, 2017, 51:250-269.
[17]   Zhang Jianming, Lin Weicheng, Dong Yunqiao. A dual interpolation boundary face method for elasticity problems[J], European Journal of Mechanics - A/Solids, 2019,73:500-511.
[18]   Burkhart D, Hamann B, Umlauf G. Iso-geometric Finite Element Analysis Based on Catmull-Clark Subdivision Solids[J]. Computer Graphics Forum, 2010, 29(5):1575-1584.
[19]   Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points[J]. Computer Aided Design, 1978, 10(6):356-360.
[20]   Böhm W, Farin G, Kahmann J. A survey of curve and surface methods in CAGD[J]. Computer Aided Geometric Design, 2015, 1(1):1-60.
[21]   Dyn NA. butterfly subdivision scheme for surface interpolation with tension control[J]. ACM Transactions on Graphics, 1990, 9(2):160-169.
[22]   Kobbelt L.  -subdivision[J]. Proceedings of Acm Siggraph, 2000, 18(01):103-112.
[23]   Bandara K, Rüberg T, Cirak F. Shape optimisation with multiresolution subdivision surfaces and immersed finite elements[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 300:510-539.
[24]   Liu Zhaowei, Majeed M, Cirak F, et al. Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces[BE/OL].(2019-04-14). https://arxiv.org/abs/1704.08491v1.
[25]   Chen Leilei, Lu Chuang, Lian Haojie, et al. Acoustic topology optimization of sound absorbing materials directly from subdivision surfaces with isogeometric boundary element methods[J]. Computer Methods in Applied Mechanics and Engineering, 2020,362:11–28.
[26]   Li Shengze, Trevelyan J, and Wu Zeping, et al. An adaptive svd-krylov reduced ordermodel for surrogate based structural shape optimization through isogeometric boundary element method[J]. Computer Methods in Applied Mechanics and Engineering, 2019,86:313–338.
[27]   Wang Donghui, Wu Zeping, and Fei Yang, et al. Structural design employing a sequential approximation optimization approach[J]. Computers Structures,2014, 134:75–87.
[28]   Wu Zeping, Wang Donghui, Patrick ON, et al. Unified estimate of gaussian kernel width for surrogate models[J]. Neurocomputing,2016, 203:41–51.
[29]   Stam J. Exact evaluation of Loop subdivision surfaces at arbitrary parameter values[C]. International conference on computer graphics and interactive techniques,1998 :111-124,Seattle,U,S,A.
[30]   陈磊磊,王中王,卢闯,等.Catmull-Clark细分曲面边界元法的结构声学拓扑优化分析[J].振动与冲击,2020,39(20):97-105.
Chen Lei-lei, Wang Zhong-wang,Lu Chuang,et al. Structural acoustic topology optimization analysis of a Catmull-Clark subdivision surface boundary element method[J]. JOURNAL OF VIBRATION AND SHOCK,2020,39(20):97-105.
[31]   Junger MC, Feit D. Sound,Structures and Their Interaction[M].The MIT Press, Cambridge, Massachusetts,1986

PDF(1455 KB)

858

Accesses

0

Citation

Detail

段落导航
相关文章

/