高速球轴承冠形保持架振动特性研究

贾晓芳1,邓凯文1,唐志霖1,崔永存1,张文虎1,2,邓四二1,2,3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 16-23.

PDF(2425 KB)
PDF(2425 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 16-23.
论文

高速球轴承冠形保持架振动特性研究

  • 贾晓芳1,邓凯文1,唐志霖1,崔永存1,张文虎1,2,邓四二1,2,3
作者信息 +

A study on vibration characteristics of crown cages in high speed ball bearings

  • JIA Xiaofang1,DENG Kaiwen1,TANG Zhilin1,CUI Yongcun1,ZHANG Wenhu1,2,DENG Si’er1,2,3
Author information +
文章历史 +

摘要

冠形保持架重心位置直接影响高速深沟球轴承保持架动态性能,进而影响轴承高速工作性能和使用寿命。针对一种新型深沟球轴承修形冠形保持架,给出了冠形保持架修形半径与其重心位置的关系式,结合滚动轴承动力学理论,建立了深沟球轴承非线性动力学微分方程组,采用预估-矫正变步长积分法对轴承非线性动力学微分方程组进行求解,在此基础上,对冠形保持架修形半径与保持架振动特性的关系进行了分析。研究结果表明:冠形保持架修形半径能改变保持架重心与保持架兜孔中心面距离,降低保持架运转过程附加力矩,有效降低保持架的振动;过大或过小的修形半径不利于减弱保持架振动,当高速球轴承保持架修形半径为8.3mm时,保持架加速度级达到最小,此时保持架振动最低;随着轴承使用条件改变,保持架振动加速度级随径向载荷增加呈现先增大后减小趋势;此外,保持架振动加速度级随轴承转速增加而增大,在轴承运行速度不变的情况下,考虑选取合适的保持架修形半径达到减弱保持架振动效果;当轴向载荷与轴承额定动载荷比值在0.6%-0.8%范围内时,保持架振动结果较小且轴承寿命较高。

Abstract

The center of gravity of the crown cage directly affects the cage's dynamic performance in high-speed deep groove ball bearings, which in turn affects the high-speed performance and service life of the bearing. Aiming at a new type of modified crown cage, the equations between modified radius and the center of gravity is given. Combining the dynamics theory, the nonlinear dynamic differential equations of deep groove ball bearings are established. In addition, the predict-correct integral algorithm with variable step is applied to solve dynamic equations. On this basis, the relationship between modified radius and the vibration performance is analyzed. The research results show that the crown cage modified radius can reduce the additional moment, and effectively reduce the vibration of the cage through changing the distance between the center of gravity and the center surface of the cage pocket. Too large or too small modified radius is not conducive to reducing the vibration of the cage. When the modified radius is 8.3mm, the cage acceleration level reaches the minimum and the cage vibration is the lowest. As the service conditions of the bearing change, the vibration results show a trend of first increase and then decrease with the change of radial load. The vibration acceleration level of the cage increases with the increase of the bearing speed. Under the condition that the bearing operating speed is unchanged, the appropriate modified radius of the cage can be selected to reduce the vibration effect. When the ratio of the axial load to the dynamic load rating of the bearing is in the range of 0.6%-0.8%, the cage vibration result is smaller and the bearing life is longer.

关键词

高速深沟球轴承 / 冠形保持架重心位置 / 修形设计 / 振动特性

Key words

high speed deep groove ball bearings / center of gravity position of crown cage / modified design / vibration characteristics

引用本文

导出引用
贾晓芳1,邓凯文1,唐志霖1,崔永存1,张文虎1,2,邓四二1,2,3. 高速球轴承冠形保持架振动特性研究[J]. 振动与冲击, 2022, 41(12): 16-23
JIA Xiaofang1,DENG Kaiwen1,TANG Zhilin1,CUI Yongcun1,ZHANG Wenhu1,2,DENG Si’er1,2,3. A study on vibration characteristics of crown cages in high speed ball bearings[J]. Journal of Vibration and Shock, 2022, 41(12): 16-23

参考文献

[1] CHOE B, LEE J, JEON D, et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part I: Effects of cage guidance and pocket clearances[J]. Mechanical Systems and Signal Processing, 2019, 115: 545-569.
[2] CHOE B, KWAK W, JEON D, et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part II: Effects of cage mass imbalance[J]. Mechanical Systems and Signal Processing, 2019, 116: 25-39.
[3] CUI Y C, DENG S E, DENG K W, et al. Experimental study on impact of roller imbalance on cage stability[J]. Chinese Journal of Aeronautics, 2020: 1-17.
[4] CUI Y C, DENG S E, NIU R J, et al. Vibration effect analysis of roller dynamic unbalance on the cage of high-speed cylindrical roller bearing[J]. Journal of Sound and Vibration, 2018, 434: 314-335.
[5] CUI Y C, DENG S E, YANG H S, et al. Effect of cage dynamic unbalance on the cages dynamic characteristics in high-speed cylindrical roller bearings[J]. Industrial Lubrication and Tribology, 2019, 71(10): 1125-1135.
[6] ZHANG W H, DENG S E, CHEN G D, et al. Impact of lubricant traction coefficient on cage’s dynamic characteristics in high-speed angular contact ball bearing[J]. Chinese Journal of Aeronautics, 2017, 30(2): 827-835.
[7] SAKAGUCHI T, HARADA K. Dynamic analysis of cage behavior in a tapered roller bearing[J]. Journal of Tribology-Transactions of the ASME, 2006, 128(3): 604-611.
[8] GHAISAS N, WASSGREN C R, SADEGHI F. Cage Instabilities in Cylindrical Roller Bearings[J]. Journal of Tribology, 2004, 126(4): 681-689.
[9] 吴正海, 徐颖强, 邓四二, 等. 高速脂润滑圆锥滚子轴承保持架动态稳定性分析[J]. 振动与冲击, 2019, 38(10): 49-57.
WU Z H, XU Y Q, DENG S E, et al. Dynamic stability of cages in high-speed tapered roller bearings with grease lubrication[J]. Journal of Vibration and Shock, 2019, 38(10): 49-57.
[10] 张志强, 王黎钦, 张传伟, 等. 变工况过程中球轴承保持架的稳定性[J]. 工程科学学报, 2019, 41(11): 1458-1464.
ZHANG Z Q, WANG L Q, ZHANG C W, et al. Cage stability of ball bearings under variable working conditions[J]. Chinese Journal of Engineering, 2019, 41(11): 1458-1464.
[11] 王自彬, 邓四二, 张文虎, 等. 高速圆柱滚子轴承保持架运行稳定性分析[J]. 振动与冲击, 2019, 38(09): 100-108.
WANG Z B, DENG S E, ZHANG W H, et al. Operational stability analysis for cage of high-speed cylindrical roller bearings[J]. Journal of Vibration and Shock, 2019, 38(9): 100-108.
[12] 孙雪, 邓四二, 陈国定, 等. 弹性支承下圆柱滚子轴承保持架稳定性分析[J]. 航空动力学报, 2018, 33(2): 487-496.
SUN X, DENG S E, CHEN G D, et al. Analysis of cage's stability in a cylindrical roller bearing with elastic support[J]. Journal of Aerospace Power, 2018, 33(2): 487-496.
[13] 黄运生, 邓四二, 张文虎, 等. 冲击载荷对铁路轴箱轴承塑料保持架动态性能影响研究[J]. 振动与冲击, 2018, 37(1): 172-180.
HUANG Y S, DENG S E, ZHANG W H, et al. Influence of impact loads on the dynamic characteristics of plastic cages in railway axle bearings[J]. Journal of Vibration and Shock, 2018, 37(1): 172-180.
[14] 满维伟, 张文虎, 郑艳伟, 等. 润滑油拖动特性对高速角接触球轴承保持架运动平稳性的影响[J]. 轴承, 2017, (11): 31-37.
MAN W W, ZHANG W H, ZHENG Y W, et al. Influence on traction characteristics of lubricating oil on motion stability for cages in high speed angular contact ball bearings[J]. Bearing, 2017, (11): 31-37.
[15] 黄迪山. 微型轴承保持架质心轨迹检测与特性分析[J]. 中国机械工程, 2012, 23(15): 1779-1784.
HUANG D S. Detection and characteristic analysis for mass center orbit of bearing cage[J]. China Mechanical Engineering, 2012, 23(15): 1779-1784.
[16] 黄迪山, 郭兰满, 刘品, 等. 微型轴承保持架轴向振动检测与分析[J]. 轴承, 2010, (03): 29-31.
HUANG D S, GUO L M, LIU P, et al. Detection and analysis on axial vibration of miniature bearing cage[J]. Bearing, 2010, (03): 29-31.
[17] 黄迪山, 孙罕, 刘玉霞, 等. 图像处理技术检测微型冠状保持架形位误差[J]. 轴承, 2011, (04): 41-44.
HUANG D S, SUN H, LIU Y X, et al. Measurement on geometrical error of miniature crown cage using image processing technology[J]. Bearing, 2011, (04): 41-44.

PDF(2425 KB)

396

Accesses

0

Citation

Detail

段落导航
相关文章

/