车辆刚度阻尼多级可调式油气悬架系统分析及控制研究

汪少华,翟旭辉,孙晓强,施德华,殷春芳

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 168-177.

PDF(1707 KB)
PDF(1707 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 168-177.
论文

车辆刚度阻尼多级可调式油气悬架系统分析及控制研究

  • 汪少华,翟旭辉,孙晓强,施德华,殷春芳
作者信息 +

Analysis and control of a vehicle hydro pneumatic suspension system with multistage adjustable stiffness and damping characteristics

  • WANG Shaohua,ZHAI Xuhui,SUN Xiaoqiang,SHI Dehua,YIN Chunfang
Author information +
文章历史 +

摘要

针对传统可控悬架系统刚度阻尼调节过程中存在的模型构建难、精度要求高且能耗偏大等问题,提出一种基于高速开关电磁阀的刚度阻尼多级可调式油气悬架系统新结构及其控制方法。该新型油气悬架通过控制四个高速开关电磁阀的开关状态实现两种刚度模式和四种阻尼模式,从而实现悬架系统刚度阻尼特性的大范围调节。结合新型油气悬架系统的振动特性机理,建立了能够准确反映其特征的数学模型。根据车辆悬架设计要求,确定了新型油气悬架系统的关键部件参数,在仿真和试验的基础上对模型精度进行了验证。最后,利用粒子群优化算法对不同行驶工况下油气悬架系统刚度和阻尼特性进行了优化匹配,并设计模式切换控制方法来获取不同行驶工况下油气悬架刚度阻尼模式的最佳切换序列。仿真结果表明,与被动油气悬架相比,新型刚度阻尼多模式切换油气悬架系统的车身振动加速度均方根值下降了33.3%,悬架动挠度均方根值降低了29.6%,车轮动载荷均方根值降低了9.36%,能够有效改善车辆隔振性能。

Abstract

For the traditional adjustable mechanism of controllable suspension system, there exists a dilemma with sophisticated model construction, high accuracy and high energy consumption. To address this problem, this paper proposes a multi-stage adjustable hydro pneumatic suspension (HPS) structure with control method based on high-speed on-off solenoid valve. Two stiffness modes and four damping modes are realized by controlling the states of four high-speed on-off solenoid valves in the hydro pneumatic suspension, and incorporated with the vibration characteristic mechanism of the new hydro pneumatic suspension, a mathematical model which can accurately reflect its characteristics is established. The key component parameters of the new hydro pneumatic suspension are designed according to the vehicle parameters, while the static and dynamic output characteristics of the hydro pneumatic suspension are verified by simulation and test. Furthermore, the particle swarm optimization (PSO) algorithm is utilized to optimize the stiffness and damping of hydro pneumatic suspension under different profiles, and the mode switching control method is designed to obtain the optimal switching sequence of stiffness and damping under variant working conditions. The simulation results show that compared with the passive hydro pneumatic suspension, the root mean square value of the body vibration acceleration of the new stiffness damping multi-mode switching hydro pneumatic suspension system is reduced by 33.3%, the root mean square value of the suspension dynamic deflection is reduced by 29.6%, and the root mean square value of the wheel dynamic load is reduced by 9.36%, which can effectively improve the vehicle vibration isolation performance.

关键词

油气悬架 / 刚度阻尼多级可调 / 粒子群优化算法 / 模式切换

Key words

hydro pneumatic suspension / multi-stage adjustable stiffness and damping / particle swarm optimization / mode switching

引用本文

导出引用
汪少华,翟旭辉,孙晓强,施德华,殷春芳. 车辆刚度阻尼多级可调式油气悬架系统分析及控制研究[J]. 振动与冲击, 2022, 41(12): 168-177
WANG Shaohua,ZHAI Xuhui,SUN Xiaoqiang,SHI Dehua,YIN Chunfang. Analysis and control of a vehicle hydro pneumatic suspension system with multistage adjustable stiffness and damping characteristics[J]. Journal of Vibration and Shock, 2022, 41(12): 168-177

参考文献

[1] Kwon K, Seo M, Kim H, et al. Multi-objective optimisation of hydro-pneumatic suspension with gas–oil emulsion for heavy-duty vehicles[J]. Vehicle System Dynamics, 2020, 58(7):1146-1165.
[2] 陶伟,刘志强.基于阻尼状态切换的装载机座椅悬架控制[J].江苏大学学报(自然科学版),2019,40(05):504-510.
TAO Wei, LIU Zhiqiang. Seat suspension control of Loader Based on damping state switching [J]. Journal of Jiangsu University (Natural Science Edition), 2019,40 (05): 504-510.
[3] Ahmed M R , Yusoff A R , Romlay F R M . Adjustable Valve Semi-Active Suspension System for Passenger Car[J]. International Journal of Automotive and Mechanical Engineering, 2019, 16(2):6470-6481.
[4] 袁加奇, 范骏, 周永清,等. 刚度和阻尼可调前桥油气悬架的设计[J]. 机床与液压, 2019, 47(03):142-148.
YUAN Jiaqi, FAN Jun, ZHOU Yongqing, et al. Design of a Front Alxe Hydro-pneumatic Suspension with Controllable Stiffness and Damping[J]. Machine Tool & Hydraulics, 2019, 47(03):142-148.
[5] Sim K , Lee H , Yoon J W , et al. Effectiveness evaluation of hydro-pneumatic and semi-active cab suspension for the improvement of ride comfort of agricultural tractors[J]. Journal of Terramechanics, 2017, 69(1):23-32.
[6] 杨杰, 陈思忠, 吴志成,等. 油气悬架可控刚度阻尼设计与试验 [J]. 农业机械学报, 2008, 39(10):20-25.
YANG Jie, CHEN Sizhong, Wu Zhicheng, et al. Design and Testing on the Hydro-pneumatic Suspensions with Controllable Stiffness and Damping[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10):20-25.
[7] SUN Xiao-qiang , CAI Ying-feng , YUAN Chao-chun, et al. Hybrid model predictive control of damping multi-mode switching damper for vehicle suspensions[J]. Journal of Vibroengineering, 2017, 19(4):2910-2930.
[8] 李仲兴, 郭子权, 王传建,等. 越野车用两级压力式油气弹簧的建模与仿真[J]. 振动,测试与诊断, 2017(3), 37(3):512-517.
LI Zhongxing, GUO Ziquan, WANG Chuanjian, et al. Modeling and Simulation of a Two-stage Pressure Hydro-pneumatic Spring for Off-Road Vehicle[J]. Journal of Vibration, Measurement & Diagnosis, 2017(3) , 37(3):512-517.
[9] 殷春芳,张金超,汪少华,等.减振器示功图面积对车辆平顺性的影响[J].江苏大学学报(自然科学版),2017,38(06):645-651.
YIN Chunfang, ZHANG Jinchao, WANG Shaohua,et al. Influence of damper indicator area on vehicle ride comfort [J]. Journal of Jiangsu University (Natural Science Edition), 2017,38 (06): 645-651.
[10] Lin D , Yang F , Gong D , et al. Design and experimental modeling of a compact hydro-pneumatic suspension strut[J]. Nonlinear Dynamics, 2020, 100(4):3307-3320.
[11] Raparelli T , Bertetto A M , Mazza L . Experimental and numerical study of friction in an elastomeric seal for pneumatic cylinders[J]. Tribology International, 1997, 30(7):547-552.
[12] Theron N J , Els P S . Modelling of a semi-active hydropneumatic spring–damper unit[J]. International Journal of Vehicle Design, 2007, 45(4):501-521.
[13] Jiao N , Guo J , Liu S . Hydro-Pneumatic Suspension System Hybrid Reliability Modeling Considering the Temperature Influence[J]. IEEE Access, 2017, 5:19144-19153.
[14] 陈龙, 马瑞,孙晓强,等.车辆半主动悬架阻尼多模式切换控制研究[J]. 振动与冲击, 2020, 39(13):143-155.
CHEN Long, MA Rui, SUN Xiaoqiang, et al. Damping multi-mode switching control for a vehicle semi-active suspension[J]. Journal of Vibration and Shock, 2020, 39(13):143-155.
[15] 孟祥鹏,孙泽宇,丁仁凯,等.基于改进天棚控制的混合电磁主动悬架节能机理与试验[J].江苏大学学报(自然科学版),2020,41(06):627-633.
MENG Xiangpeng, SUN Zeyu, DING Renkai,et al. Energy saving mechanism and test of hybrid electromagnetic active suspension based on improved canopy control [J]. Journal of Jiangsu University (Natural Science Edition), 2020,41 (06): 627-633.
[16] 汪少华, 陈龙, 孙晓强,等. 电控空气悬架系统阻尼多模式自适应切换控制研究[J]. 农业机械学报, 2013, 44(12):22-28.
WANG Shaohua, CHEN long, SUN Xiaoqiang, et al. Research on damping multi-mode adaptive switching control of electronically controlled air suspension system [J]. Journal of agricultural machinery, 2013, 44 (12): 22-28
[17] Pedro J O ,  Dangor M ,  Dahunsi O A , et al. Particle swarm optimized intelligent control of nonlinear full-car electrohydraulic suspensions[J]. IFAC Proceedings Volumes, 2014,47(3):1772-1777.
[18] 孔亮,江洪,徐兴.附加气室容积可调空气悬架系统的决策控制[J].机械设计与制造,2014(05):246-249.
KONG Liang, JIANG Hong, XU Xing. Decision control of air suspension system with adjustable additional air chamber volume [J]. Mechanical design and manufacturing, 2014 (05): 246-249.

PDF(1707 KB)

750

Accesses

0

Citation

Detail

段落导航
相关文章

/