功能梯度耦合梁的能量辐射传递模型

王幸,钟强,李翱,陈海波

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 178-187.

PDF(2408 KB)
PDF(2408 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 178-187.
论文

功能梯度耦合梁的能量辐射传递模型

  • 王幸,钟强,李翱,陈海波
作者信息 +

A radiative energy transfer model for functionally graded coupled beams

  • WANG Xing,ZHONG Qiang,LI Ao,CHEN Haibo
Author information +
文章历史 +

摘要

本研究的目的是将能量辐射传递方法(RETM)拓展应用于功能梯度材料(FGM)耦合梁的高频振动响应分析。在RETM理论中,FGM耦合梁的振动响应由能量密度和功率流强度来表示,振动波场由激励点实源产生的直接场与边界虚源产生的反射场叠加而成。由FGM梁微元的能量平衡推导了能量密度及功率流强度的核函数,利用耦合处的力平衡以及位移连续性推导了能量传递系数,根据边界功率流平衡确定了边界虚源强度。数值算例计算结果与波传播分析方法(WPA)的解析解进行对比,验证了所建立模型的正确性。最后,分析了梯度指数n对FGM耦合梁能量传递系数以及高频振动响应的影响,发现n的影响主要集中在n从0变化到1的范围。

Abstract

The purpose of this study is to extend the radiative energy transfer method (RETM) to the analysis of high-frequency vibration response of functionally graded material (FGM) coupled beams. In RETM theory, the vibration response of FGM coupled beams is expressed by the energy density and power flow intensity. The vibration wave field is composed of the direct field generated by the real source of the excitation point and the reflection field generated by the virtual sources at the boundary. The kernel functions of energy density and power flow intensity are derived from the energy balance of the FGM beam element. The energy transfer coefficients between the FGM coupled beams are derived from the force balance and displacement continuity at the coupling point. The intensities of the boundary virtual sources are determined by the boundary power flow balances. Numerical results are compared with the analytical solutions calculated by the wave propagation analysis method (WPA) to verify the correctness of the proposed model. Furthermore, the influence of the gradient index n on the energy transfer coefficients and high-frequency vibration response is discussed. Simulation results show that the influence of n is mainly concentrated in the range of 0 to 1.

关键词

能量辐射传递法 / 功能梯度材料 / 耦合梁 / 高频振动 / 能量传递系数

Key words

radiative energy transfer method / functionally graded materials / coupled beams / high-frequency vibration / energy transfer coefficients

引用本文

导出引用
王幸,钟强,李翱,陈海波. 功能梯度耦合梁的能量辐射传递模型[J]. 振动与冲击, 2022, 41(12): 178-187
WANG Xing,ZHONG Qiang,LI Ao,CHEN Haibo. A radiative energy transfer model for functionally graded coupled beams[J]. Journal of Vibration and Shock, 2022, 41(12): 178-187

参考文献

[1] 王志刚, 徐福泉, 刘启迪.复合材料尾桨自动化制造技术研究[J]. 航空制造技术, 2018, 61(14): 97-101.
Wang Zhigang, Xu Fuquan, Li Qidi. Automatic Manufacturing Technology of Helicopter Tail Rotor Blade[J]. Aeronautical Manufacturing Technology, 2018, 61(14): 97-101.
[2] Sarathchandra D T, Subbu S K, Venkaiah N. Functionally graded materials and processing techniques: An art of review[J]. ScienceDirect. Materials Today: Proceedings, 2018, 5: 21328-21334.
[3] Koizumi M. FGM activities in Japan[J]. Composites Part B Engineering, 1997, 28(1-2): 1-4.
[4] Wang Y Y, Chen H B, Zhou H W. A fatigue life estimation algorithm based on Statistical Energy Analysis in high-frequency random processes[J]. International Journal of Fatigue, 2016, 83(FEB.PT.2): 221-229.
[5] 周红卫. 高频声振耦合能量有限元若干问题研究[D]. 中国科学技术大学, 2015.
[6] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003.
[7] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.
[8] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京:北京理工大学出版社, 1995.
[9] 尹忠俊, 陈兵,岳恒昌,等. 基于统计能量法的排气管道系统的振动和噪声分析与研究[J]. 振动与冲击, 2010, 29(2): 159-162.
Yin Zhongjun, Chen Bing, Yue Hengchang, et al. Analyze and study on the vibration and noise for exhaust piping system based on statistical energy analysis[J]. Journal of Vibration and
[10] Bot A L. A vibroacoustic model for high frequency analysis[J]. Journal of Sound & Vibration, 1998, 211(4): 537-554.
[11] Zhong Q, Chen H B, Bot A L. Radiative energy transfer model for finite anisotropic plates[J]. Journal of Sound and Vibration, 2021,497,115947.
[12] Bot A L. Energy transfer for high frequencies in built-up structures[J]. Journal of Sound & Vibration, 2002, 250(2): 247-275.
[13] Aydogdu M, Taskin V. Free vibration analysis of functionally graded beams with simply supported edges[J]. Materials & Design, 2007, 28(5): 1651-1656.
[14] 赵亮, 胡振东. 轴向运动功能梯度悬臂梁动力学分析[J].振动与冲击, 2016, 35(2): 124-128.
Zhao Liang, Hu Zhendong. Dynamic analysis of an axially translating functionally graded cantilever beam[J]. Journal of Vibration and Shock, 2016, 35(2): 124-128.
[15] 邓昊, 程伟. 沿轴向指数分布的功能梯度Timoshenko梁的频率精确解[J]. 振动与冲击, 2017, 036(006): 91-96.
Deng Hao, Cheng Wei. Exact solution of the free vibration of exponentially non-uniforr functionlly graded Timoshenko beams[J]. Journal of Vibration and Shock, 2017, 036(006): 91-96.
[16] Liu Z H, Niu J C. Vibrational energy flow model for functionally graded beams[J]. Composite Structures, 2018, 186: 17-28.
[17] 吴崇建, 雷智洋, 吴有生. 结构噪声核心价值与理论逻辑解读第三部分: WPA法与机理分析[J]. 中国舰船研究,2018, 13(5): 1-9,76.
Wu Chongjian, Lei Zhiyang, Wu Yousheng. Core value and theoretical logic of structure-borne noise. Part 3: WPA method and mechanism analysis[J]. Chinese Journal of Ship Research, 2018, 13(5): 1-9,76.
[18] Bot A L, Cotoni V. Validity diagrams of statistical energy analysis[J]. Journal of Sound and Vibration, 2010, 329(2):221-235.
[19] Bot A L. Foundation of Statistical Energy Analysis in Vibroacoustics[M]. Oxford University Press, 2015.

PDF(2408 KB)

Accesses

Citation

Detail

段落导航
相关文章

/