主余震作用下顶底角钢自复位梁柱节点的抗震性能研究

俞昊然1,2,李维滨1,2,郎泰申1,2,郑鑫1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 238-246.

PDF(2450 KB)
PDF(2450 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 238-246.
论文

主余震作用下顶底角钢自复位梁柱节点的抗震性能研究

  • 俞昊然1,2,李维滨1,2,郎泰申1,2,郑鑫1,2
作者信息 +

Seismic behavior of self-centering beam-to-column connections with top-and-seat angles under mainshock-aftershock sequences

  • YU Haoran1,2, LI Weibin1,2, LANG Taishen1,2, ZHENG Xin1,2
Author information +
文章历史 +

摘要

为研究顶底角钢自复位梁柱节点在主余震作用下的抗震性能,通过连续的拟静力试验加载以模拟主余震作用,分析了节点的滞回性能、承载力、初始转动刚度、耗能能力、残余变形及钢绞线拉力,并通过有限元分析比较了顶底角钢半刚性节点与自复位节点在重复循环荷载作用下的抗震性能。研究结果表明,顶底角钢自复位节点在主余震作用下依然具有损伤可控性,塑性变形仅存在于角钢中;相比于单独主震的情况,主余震作用会明显降低节点的滞回性能、耗能能力及初始转动刚度,且节点经历的主震强度越大其在余震作用下的承载力会越低,而钢绞线的拉力所受影响较小;与相同尺寸的顶底角钢半刚性节点相比,顶底角钢自复位节点在单独主震与主余震作用下的抗震能力均更优。

Abstract

To investigate the seismic behavior of self-centering beam-to-column connections with top-and-seat angles under mainshock-aftershock sequences, continuous pseudo static tests on an experimental specimen were conducted. The hysteretic performance, bearing and energy dissipation capacities, initial rotational stiffness, residual deformation and strand tension of the specimen were analyzed, respectively. The seismic performance of a semi-rigid connection with top-and-seat angles was compared with that of the self-centering connection using the method of finite element simulation. It was shown that plastic deformation is only found in the angles of the specimen, which indicates that the connection has damage controllability under mainshock-aftershock sequences; compared with the single main shock, the hysteretic performance, energy dissipation capacity and initial rotational stiffness of the connection are significantly reduced under the action of mainshock-aftershock sequences, while the tension of steel strands is less affected; the higher the main shock intensity is, the smaller the bearing capacity of the connection is under the aftershock; compared with semi-rigid connections with top-and-seat angles, the self-centering connection has better seismic performance whether under the action of a single main shock or mainshock-aftershock sequences.

关键词

自复位梁柱节点 / 主余震 / 拟静力试验 / 抗震性能 / 顶底角钢 / 预应力钢绞线

Key words

self-centering beam-to-column connection / mainshock-aftershock sequences / pseudo static test / seismic behavior / top-and-seat angles / prestressed strand

引用本文

导出引用
俞昊然1,2,李维滨1,2,郎泰申1,2,郑鑫1,2. 主余震作用下顶底角钢自复位梁柱节点的抗震性能研究[J]. 振动与冲击, 2022, 41(12): 238-246
YU Haoran1,2, LI Weibin1,2, LANG Taishen1,2, ZHENG Xin1,2. Seismic behavior of self-centering beam-to-column connections with top-and-seat angles under mainshock-aftershock sequences[J]. Journal of Vibration and Shock, 2022, 41(12): 238-246

参考文献

[1]  吕西林, 陈云, 毛苑君. 结构抗震设计的新概念——可恢复功能结构 [J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948.
LU Xilin, CHEN Yun, MAO Yuanjun. New concept of structural seismic design: Earthquake Resilient Structures [J]. Journal of Tongji University (Natural Science), 2011, 39(7): 941-948.
[2]  吕西林, 武大洋, 周颖. 可恢复功能防震结构研究进展 [J]. 建筑结构学报, 2019, 40(2): 1-15.
LU Xilin, WU Dayang, ZHOU Yin. State of the art of earthquake resilient structures [J]. Journal of Building Structures, 2019, 40(2): 1-15.
[3]  Garlock M, Ricles J, Sause R, et al. Post-tensioned seismic resistant connections for steel frames [C]// Structural Stability Research Council Conference Workshop. Rolla Missouri: Structural Stability Research Council, 1998.
[4]  Garlock M, Ricles J, Sause R. Cyclic load tests and analysis of bolted top-and-seat angle connections [J]. Journal of Structural Engineering, 2003, 129 (12): 1615-1625.
[5] Ricles J, Sause R, Garlock M, et al. Posttensioned seismic-resistant connections for steel frames [J]. Journal of Structural Engineering, 2001, 127 (2): 113-121.
[6]  Christopoulos C, Filiatrault A, Uang C, et al. Posttensioned energy dissipating connections for moment-resisting steel frames [J]. Journal of Structural Engineering, 2002, 128(9): 1111-1120.
[7] Rojas P, Ricles J, Sause R. Seismic performance of post-tensioned steel moment resisting frames with friction devices [J]. Journal of Structural Engineering, 2005, 131(4): 529—540.
[8]  Kim H, Christopoulos C. Seismic design procedure and seismic response of post-tensioned self-centering steel frames [J]. Earthquake Engineering & Structural Dynamics, 2010, 38(3): 355-376.
[9]  Wolski M, Ricles J M, Sause R. Experimental study of a self-centering beam-column connection with bottom flange friction device[J]. Journal of Structural Engineering, 2009, 135(5): 479-488.
[10]  Iyama J, Seo C, Ricles J, et al. Self-centering MRFs with bottom flange friction devices under earthquake loading [J]. Journal of Constructional Steel Research, 2009, 65: 314-325.
[11]  Lin Y, Sause R, Ricles J. Seismic performance of a large-scale steel self-centering moment-resisting frame: MCE hybrid simulations and quasi-static pushover tests [J]. Journal of Structural Engineering, 2013, 139(7): 1227-1236.
[12] Zhang A, Zhang Y, Li R, et al. Cyclic behavior of a pre fabricated self-centering beam-column connection with a bolted web friction device [J]. Engineering Structures, 2016, 111: 185-198.
[13] 张爱林, 张艳霞, 赵微, 等.可恢复功能的装配式预应力钢框架拟动力试验研究 [J].振动与冲击, 2016, 35(5): 207-215.
ZHANG Ailin, ZHANG Yanxia, ZHAO Wei, et al. Pseudo dynamic tests for a resilient prefabricated prestressed steel frame [J]. Journal of Vibration and Shock, 2016, 35(5): 207-215.
[14] 张艳霞, 费晨超, 宁广, 等. 可恢复功能的预应力装配式钢框架动力弹塑性分析 [J]. 振动与冲击, 2016, 35(18): 101-110.
ZHANG Yanxia, FEI Chenchao, NING Guang, et al. Dynamic elasto-plastic analysis on resilient prestressed prefabricated eesteel frame [J]. Journal of Vibration and Shock, 2016, 35(18): 101-110.
[15]  方有珍, 赵凯, 陈赟, 等. 新型PEC柱-钢梁中节点摩擦 耗能型部分自复位连接抗震性能试验研究 [J].土木工程学 报,2016, 49(04): 22-30.
FANG Youzhen, ZHAO Kai, CHEN Yun, et al. Experimental study on seismic performance of new crimping PEC column-steel beam interior joint with post-tensioned frictiondamped connection [J]. China Civil Engineering Journal, 2016, 49(04): 22-30.
[16] 方有珍, 黄志豪, 张志成, 等. 新型PEC柱-钢梁部分自复位框架层间抗震试验研究 [J]. 建筑结构学报, 2020.
FANG Youzhen, HUANG Zhihao, ZHANG Zhicheng, et al. Experimental study on seismic mechanism of inter-story substructure of innovative PEC column-steel beam frame with partial self-centering connection [J]. Journal of Building Structures, 2020.
[17] Liu X, Wang Y, Xiong J, et al. Damage behavior of steel beam-to-column connections under inelastic cyclic loading [J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(11): 910-926.
[18] 熊俊. 强震作用下钢框架焊接节点损伤性能和计算模型研究 [D]. 北京: 清华大学, 2011.
[19] AISC 341-05. Seismic provisions for structural steel buildings [S]. Chicago: American Institute of Steel Construction, 2005.
[20] 薛云勤. 主余震序列型地震动作用下RC框架结构累积附加损伤研究 [D]. 哈尔冰: 中国地震局工程力学研究所, 2016.
[21] Mccormick J, Aburano H, Ikenaga M, et al. Permissible residual deformation levels for building structures considering both safety and human elements [C]// 14th conference on earthquake engineering. Beijing: Chinese Association of Earthquake Engineering, 2008.
[22] 张逍瑶, 刘永华, 梁娟. 顶底角钢连接半刚性梁柱钢节点的滞回性能模拟分析 [J]. 世界地震工程, 2015, 31(03): 272-278.
ZHANG Xiaoyao, LIU Yonghua, LIANG Juan. Numerical analysis of the hysteretic behavior for the semi-rigid connections with top and seat angle in steel beam-to-column joints [J]. World Earthquake Engineering, 2015, 31(03): 272-278.

PDF(2450 KB)

Accesses

Citation

Detail

段落导航
相关文章

/