非局部弹性周期纳米板振动特性研究

何东泽1,布英磊2,史冬岩1,王青山3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 24-30.

PDF(1117 KB)
PDF(1117 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 24-30.
论文

非局部弹性周期纳米板振动特性研究

  • 何东泽1,布英磊2,史冬岩1,王青山3
作者信息 +

A study on vibration characteristics of nonlocal elastic periodic nanoplates

  • HE Dongze1,BU Yinglei2,SHI Dongyan1,WANG Qingshan3
Author information +
文章历史 +

摘要

本文结合Eringen非局部本构关系与Mindlin理论,对非局部弹性周期纳米板振动特性分析进行研究。根据不同材料纳米板连接处的协调关系,结合波动法对非局部周期纳米板分析模型进行建立。为了验证所建立模型的正确性,采用文献结果以及有限元法进行对比,验证本文所建立分析模型的正确性和有效性。以此为基础,开展相应的参数化研究,探寻周期纳米板结构几何参数、周期数以及支撑条件的影响情况。结果表明,本文所建立的分析模型以及求解方法准确有效,不同参数对非局部周期纳米板的振动特性均存在一定的影响效果。

Abstract

In this paper, the vibration characteristics of nonlocal elastic periodic nanoplates are investigated by Eringen nonlocal nonlocal theory and Mindlin theory. According to the coordination relationship at the joint of different nanoplates, the analysis model of nonlocal periodic nanoplates was established by wave based method. To verify the correctness of the analysis model, the literature results and finite element method are adopted to verify the correctness of the analysis in this paper. On this basis, the corresponding parameterization research is carried out to explore the influence of geometric parameters, periodic numbers, and supporting conditions. The results show that the analytical model and solution method in this paper are accurate and effective, various parameters have certain effects on the vibration characteristics of nonlocal periodic nanoplates.

关键词

非局部理论 / Mindlin理论 / 周期纳米板 / 波动法 / 振动特性

Key words

Nonlocal theory / Mindlin theory / periodic nanoplates / wave based method / vibration characteristics.

引用本文

导出引用
何东泽1,布英磊2,史冬岩1,王青山3. 非局部弹性周期纳米板振动特性研究[J]. 振动与冲击, 2022, 41(12): 24-30
HE Dongze1,BU Yinglei2,SHI Dongyan1,WANG Qingshan3. A study on vibration characteristics of nonlocal elastic periodic nanoplates[J]. Journal of Vibration and Shock, 2022, 41(12): 24-30

参考文献

[1] BUNCH J S , VAN DER ZANDE A M, VERBRIDGE S S , et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811): 490-493.
[2] CLELAND A N,ROUKES M L. A nanometre-scale mechanical electrometer [J]. Nature, 1998,392:160–162.
[3] C Nützenadel, A Züttel,  D  Chartouni, et al. Critical size and surface effect of the hydrogen interaction of palladium clusters[J]. European Physical Journal D, 2000, 8(2):245-250.
[4] Reddy J N, Kim J.A nonlinear modified couple stress-based third-order theory of functionally graded plates[J]. Composite Structures,2012,94(3):1128-1143.
[5] Reddy J N, Berry J. Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress[J]. Composite Structures, 2012, 94 (12):3664-3668.
[6] Rahaeifard M, Ahmadian M T, Firoozbakhsh K.A strain gradient based yield criterion[J]. International Journal of Engineering Science,2014,77:45-54.
[7] 刘金建,谢锋,姚林泉,等. [J]. 振动与冲击,2017, 36(19):13-20.
LIU Jin-jian, XIE Feng, YAO Lin-quan,et al. Parametric vibration and stability of an axially moving viscoelastic nanoplate based on the nonlocal theory [J]. Journal of Vibration and Shock, 2017, 36(19):13-20.
[8] Edelen D . Global thermodynamics, exterior Banach forms and Gateaux differential equations. Trends in applications of pure mathematics to mechanics, 1976.
[9] Eringen A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710.
[10] 滕兆春,刘露,衡亚洲.弹性地基上受压矩形纳米板的自由振动与屈曲特性[J].振动与冲击,2019,38(16):208-216+232.
TENG Zhao-chun, LIU Lu, HENG Ya-zhou. Free vibration and buckling characteristics of compressed rectangular nanoplates resting on elastic foundation[J]. Journal of Vibration and Shock, 2019,38(16):208-216.
[11] 张大鹏,雷勇军,段静波.基于非局部理论的黏弹性基体上压电纳米板热-机电振动特性研究[J].振动与冲击,2020,39(20):32-41.
ZHANG Da-peng, LEI Yong-jun, DUAN Jing-bo. Thermo-electro-mechanical vibration responses of piezoelectric nanoplates embedded in viscoelastic medium via nonlocal elasticity theory[J]. Journal of Vibration and Shock,2020,39(20):32-41.
[12] 王平远,李成,姚林泉.基于非局部应变梯度理论功能梯度纳米板的弯曲和屈曲研究[J].应用数学和力学,2021,42(01):15-26.
WANG Ping-yuan, LI Cheng, YAO Lin-quan. Bending and Buckling of Functionally Graded Nanoplates Based on the Nonlocal Strain Gradient Theory[J]. Applied Mathematics and Mechanics, 2021,42(01):15-26.
[13] 王平,姚杰,王东贤.四边简支载流纳米板的磁弹性稳定问题分析[J].应用力学学报,2020,37(05):1900-1906+2312.
WANG-Ping, YAO-Jie, WANG Dong-xian. Analysis of magneto-elastic stability of current-carrying nanoplates with four edges simply supported [J]. Chinese Journal of Applied Mechanics, 2020,37(05):1900-1906+2312.
[14] Chun-Chuan Liu,Zhao-Bo Chen. Dynamic analysis of finite periodic nanoplate structures with various boundaries[J]. Physica E: Low-dimensional Systems and Nanostructures,2014,60.
[15] Karami, Behrouz, Shahsavari, Davood, Janghorban, Maziar, Li, Li.Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment[J].Structural Engineering and Mechanics,2020,73(2):191-207
[16] Nazemnezhad R, Hosseini-Hashemi S, Kermajani M, et al. Exact solutions for free vibration of levy-type rectangular nanoplates via nonlocal third-order plate theory [J], 2014.
[17] Leissa A W. Vibration of shells[M]. Columbus:Ohio State University, 1973.
[18] P. Malekzadeh,M. Shojaee. Free vibration of nanoplates based on a nonlocal two-variable refined plate theory[J]. Composite Structures,2013,95.
[19] Ansari R ,Sahmani S ,  Arash B . Nonlocal plate model for free vibrations of single-layered graphene sheets[J]. Physics Letters A, 2010, 375(1):53-62.
[20] Jomehzadeh E ,Saidi A R . A study on large amplitude vibration of multilayered graphene sheets[J]. Computational Materials Science, 2011, 50(3):1043-1051.
[21] Fan J, Rong D, Zhou Z, et al. Exact solutions for forced vibration of completely free orthotropic rectangular nanoplates resting on viscoelastic foundation[J]. European Journal of Mechanics - A/Solids, 2019, 73: 22-33.

PDF(1117 KB)

290

Accesses

0

Citation

Detail

段落导航
相关文章

/