加速度载荷信息部分缺失下船舶机械噪声快速预报

刘西安1,2,杨德庆1,2,刘见华3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 247-253.

PDF(1412 KB)
PDF(1412 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 247-253.
论文

加速度载荷信息部分缺失下船舶机械噪声快速预报

  • 刘西安1,2,杨德庆1,2,刘见华3
作者信息 +

A fast prediction method of ship mechanical noise with missing some information of acceleration excitation

  • LIU Xi’an1,2, YANG Deqing1,2, LIU Jianhua3
Author information +
文章历史 +

摘要

为解决加速度载荷信息部分缺失时船舶机械噪声预报误差较大的问题,提出了基于设备等效载荷模型的快速预报方法。该方法基于设备载荷对机械噪声的影响规律,将设备的力学模型等效为FzMxy模型(设备力学模型由Fz、Mx和My构成),通过能量叠加原理实现船舶机械噪声的快速预报。设备载荷以平均加速度表征时,若能确定出激振力的各个分量的载荷系数,则根据该方法可以准确地预报船舶辐射声功率;若无法确定各个激振力分量,通过等效载荷模型确定水下辐射噪声的变化范围。模型试验结果表明,设备激振载荷以完整的加速度载荷信息给出时,基于该方法的辐射声功率的计算误差在1dB以内;若设备加速度载荷以平均加速度形式给出时,该方法可以给出水下辐射声功率的变化范围。

Abstract

To address the issue of large errors of ship mechanical noise prediction, a fast prediction method of ship mechanical noise was investigated under missing some information of acceleration excitation. By investigating the influence of exciting generalized force components on mechanical noise, it pointed out that the mechanism model of equipment is simplified to equivalent load model FzMxy which consists of Fz, Mx and My. According to the principle of energy superposition, the fast method based on equivalent load model is proposed to predict ship mechanical noise. Equipment loads characterized by average acceleration, the mechanical noise can be accurately predicted by the method if the exciting generalized forces can be determined. Otherwise, the range of mechanical noise is fast predicted. Experimental results show that the error of underwater radiated sound power is within 1dB with the complete acceleration; As the average acceleration is given, the range of sound power can be determined fast and efficiently by the equivalent load model.

关键词

机械噪声
/ 加速度载荷 / 载荷识别 / 等效载荷模型 / 水声试验

Key words

mechanical noise / acceleration load / load identification / equivalent load model / hydroacoustic experiment

引用本文

导出引用
刘西安1,2,杨德庆1,2,刘见华3. 加速度载荷信息部分缺失下船舶机械噪声快速预报[J]. 振动与冲击, 2022, 41(12): 247-253
LIU Xi’an1,2, YANG Deqing1,2, LIU Jianhua3. A fast prediction method of ship mechanical noise with missing some information of acceleration excitation[J]. Journal of Vibration and Shock, 2022, 41(12): 247-253

参考文献

[1] Khishe M, Mohammadi H. Passive sonar target classification using multi-layer perceptron trained by salp swarm algorithm[J]. Ocean engineering, 2019,181:98-108.
[2] MALAKOFF D. A Push for Quieter Ships[J]. Science, 2010,328(5985):1502-1503.
[3] Hildebrand J A. Anthropogenic and natural sources of ambient noise in the ocean[J]. Marine Ecology Progress Series, 2009,395:5-20.
[4] Zhang G, Forland T N, Johnsen E, et al. Measurements of underwater noise radiated by commercial ships at a cabled ocean observatory[J]. Marine Pollution Bulletin, 2020,153:110948.
[5] MacGillivray A O, Li Z, Hannay D E, et al. Slowing deep-sea commercial vessels reduces underwater radiated noise[J]. The Journal of the Acoustical Society of America, 2019,146(1):340-351.
[6] Merchant N D, Pirotta E, Barton T R, et al. Monitoring ship noise to assess the impact of coastal developments on marine mammals[J]. Marine Pollution Bulletin, 2014,78(1-2):85-95.
[7] Moorhouse A T. A dimensionless mobility formulation for evaluation of force and moment excitation of structures[J]. The Journal of the Acoustical Society of America, 2002,112(3 Pt 1):972-980.
[8] Adams R, Doyle J F. Multiple force identification for complex structures[J]. Experimental Mechanics, 2002,42(1):25-36.
[9] Liu Y, Shepard W S. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain[J]. Journal of sound and vibration, 2005,282(1-2):37-60.
[10] Lu Z R, Law S S. Identification of system parameters and input force from output only[J]. Mechanical systems and signal processing, 2007,21(5):2099-2111.
[11] Zhang S, He J, Yu Q, et al. Multi-scale load identification system based on distributed optical fiber and local FBG-based vibration sensors[J]. Optik (Stuttgart), 2020,219:165159.
[12] Wang L, Huang Y, Xie Y, et al. A new regularization method for dynamic load identification[J]. Science Progress, 2020,103(3):39846840.
[13] Sanchez J, Benaroya H. Asymptotic approximation method of force reconstruction: Proof of concept[J]. Mechanical Systems and Signal Processing, 2017,92:39-63.
[14] Yu L, Chan Tommy H.T. Moving force identification based on the frequency-time domain method[J]. Journal of Sound and Vibration, 2003(261):329-814.
[15] 梅立泉, 崔维庚. 面载荷识别的TSVD正则化方法[J]. 应用力学学报, 2010,27(01):140-144.
Mei Liquan, Cui Weigeng. TSVD regularization method for area load reconstruction[J]. CHINESE JOURNAL OF APPLIED MECHANICS, 2010,27(01):140-144. 
[16] Liu, Yi, Shepard, Steve W. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain[J]. Journal of Sound and Vibration, 2005,282(1):37-60.
[17] 傅志方, 华宏星. 模态分析理论与应用[M]. 上海交大出版社, 2000.
Fu Zhifang, Hu Hongxing. Modal Analysis Theory and Applications [M]. Shanghai Jiaotong University Press, 2000.
[18] 李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声数值计算方法对比研究[J]. 中国造船, 2017,58(3):114-127.
Li Qing, YANG Deqing, YU Yang. Comparative Study on Numerical Methods for Underwater Low-Frequency Radiation Noise of Ship[J]. SHIPBUILDING OF CHINA, 2017,58(3):114-127. 
[19] 李清, 杨德庆, 郁扬. 舰船低频水下辐射噪声的声固耦合数值计算方法[J]. 振动与冲击, 2018,37(03):174-179.
Li Qing, YANG Deqing, YU Yang. Numerical methods for ship underwater sound radiation in low frequency domain with vibro-acoustic coupling[J]. JOURNAL OF VIBRATION AND SHOCK, 2018,37(03):174-179.
[20] 郁扬, 杨德庆, 刘见华, 等. 动载荷施加方式对船舶设备—基座系统建模方法的影响[J]. 中国舰船研究, 2016,11(4):93.
YU Yang, YANG Deqing, LIU Jianhua, SHI Jiaxin. The influence of dynamic loads on the FE model of the ship equipment-base system[J]. Chinese Journal of Ship Research, 2016,11(4):93.
[21] 姜超君, 向阳, 何鹏, 等. 基于修正大质量法的船体振动及水下声辐射预报[J]. 中国舰船研究, 2019,14(06):172-179.
Jiang Chaojun, Xiang Yang, He Peng, Zhang Bo. Prediction on hull vibration and underwater noise radiation based on modified LMM[J]. Chinese Journal of Ship Research, 2019,14(06):172-179.
[22] 陈明, 王斌, 张胜业. 多源激励水下复杂壳体结构振动与辐射声场试验研究(英文)[J]. 船舶力学, 2008,12(06):995-1006.
Chen Ming, Wang Bin, Zhang Shengduo. Experimental Research on Vibration and Acoustic Radiation of the Submerged Complicated Shell Structure with Multiple Excitations[J].Journal of Ship Mechanics, 2008, 12(06) :995-1006.
[23] 王雪仁, 缪旭弘, 贾地, 等. 多源激励作用下结构振动响应的试验研究[J]. 振动与冲击, 2011,30(3):246-251.
Wang Xueren,Liao Xuhong,Jia di, et al. Experimental study on structural vibration response induced by multi-excitations[J]. JOURNAL OF VIBRATION AND SHOCK, 2011,30(3):246-251.
[24] 王学杰, 单衍贺, 秦新华, 高晟耀. 舰船水下辐射噪声快速预报方法[J]. 噪声与振动控制, 2018,38(5):75-80.
Wang Xuejie,Shan Yanhe, Qing Xinhua Gao Shengyao. A Fast Prediction Method for Underwater Radiation Noise
from Ships[J]. NOISE AND VIBRA TION CONTROL, 2018,38(5):75-80.
[25] Zhang Feng, Li Jun, Bai Zhen-guo. Engineering Estimation Method of Sound Radiation from Submerged Cylindrical Shells with Random Velocity Distributions[J]. Journal of Ship Mechanics, 2020,24(06):819-824.

PDF(1412 KB)

301

Accesses

0

Citation

Detail

段落导航
相关文章

/