一种改进的气囊隔振装置结构设计及试验研究

李步云1,2,帅长庚1,2,杨兆豪1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 31-35.

PDF(1239 KB)
PDF(1239 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 31-35.
论文

一种改进的气囊隔振装置结构设计及试验研究

  • 李步云1,2,帅长庚1,2,杨兆豪1,2
作者信息 +

An improved structure designed for an air spring vibration isolation system and its experiment research

  • LI Buyun1,2,SHUAI Changgeng1,2,YANG Zhaohao1,2
Author information +
文章历史 +

摘要

为提升气囊隔振装置低频隔振性能,需要进一步降低系统刚度。本文提出了一种新型气囊隔振装置设计形式,该结构能够保证隔振系统的静承载能力不变,但刚度实现大幅降低。改进的结构设计是在原系统的结构基础上,引入了万向节与连接结构。在静平衡状态时,万向节不发生转动,引入的新结构不会影响系统的静承载能力。当承载平台发生振动时,引入的新结构改变侧向气囊的变形情况,从而降低系统的刚度。本文建立了新系统简化的力学模型,推导出系统回复力与位移的关系,并分析了无量纲参数对系统特性的影响。进行了动力学分析,比较了新系统与原系统力传递率特性,结果发现新系统的起始隔振频率远低于原系统。设计并制造了原理样机,并进行试验。试验结果表明,新系统可以近似为一个线性系统,与理论分析相符,且隔振系统的刚度最大可下降75%。理论与试验结果表明,该结构设计能够有效减低系统刚度,从而提升隔振系统隔振能力。

Abstract

To reduce the stiffness of vibration isolation system is a fundamental way to improve the ability of low frequency vibration isolation. In this paper, a new structure of air spring vibration isolation system is proposed. The structure can ensure the static bearing capacity unchanged, but the stiffness is greatly reduced. The new system introduces universal joint and connection structure on the basis of original system. In the static equilibrium state, the universal joint does not rotate, and the new structure will not affect the static bearing capacity of the system. As the bearing platform vibrates, the new structure changes the deformation of the lateral air springs, thus reducing the stiffness of the system. In this paper, a simplified model of the new system is established, and the relationship between the restoring force and displacement is derived. The influence of dimensionless parameters is analyzed. The results show that the vibration isolation frequency of the new system is much lower than that of the original system. The principle prototype is designed and manufactured, and the test is carried out. The experimental results show that the new system can be approximated as a linear system, which is consistent with the theoretical analysis, and the stiffness of the vibration isolation system is reduced by about 75%. The theoretical and experimental results show that the structural design can effectively reduce the stiffness and improve the vibration isolation ability.

关键词

气囊 / 隔振装置 / 结构设计 / 低刚度设计

Key words

air spring / vibration isolation / structure optimization design / low stiffness design

引用本文

导出引用
李步云1,2,帅长庚1,2,杨兆豪1,2. 一种改进的气囊隔振装置结构设计及试验研究[J]. 振动与冲击, 2022, 41(12): 31-35
LI Buyun1,2,SHUAI Changgeng1,2,YANG Zhaohao1,2. An improved structure designed for an air spring vibration isolation system and its experiment research[J]. Journal of Vibration and Shock, 2022, 41(12): 31-35

参考文献

[1] 古龙,闵捷. 船舶振动噪声控制技术的现状与发展[J].舰船科学技术, 2019, 41(23):1-5.
GU Long, MIN Jie. The development of ship vibration and noise control technology[J]. Ship science and technology 2019,41(23):1-5.
[2] 何琳, 赵应龙, 帅长庚,等. 智能气囊隔振装置[P].中国,CN101813152B. 2012.
HE Lin, ZHAO Yinglong, SHUAI Changeng, et al. Intelligent air spring vibration isolation system[P]. China, CN101813152B. 2012.
[3] LV Zhiqiang, HE Lin and SHUAI Changeng. Optimization of natural frequencies of large-scale two-stage raft system[J]. Journal of Physics Conference, 2016, 744:012180.
[4] 刘哲,吴帅,李广.  SWATH船主发电机组浮筏隔振设计及分析[C]// 2019年船舶结构力学学术会议.武汉:中国造船工程学会船舶力学学术委员会,2019.
[5] 刘红梅,胡瑞. 船舶动力设备机械双层混合隔振自适应控制研究[J].舰船科学技术,2018,40(10):88-90.
LIU Hongmei, HU Rui. Research on the adaptive control of double-deck mixed vibration isolation of marine power equipment[J]. Ship science and technology, 2018,40(10):88-90.
[6] 卜文俊, 施亮, 何琳, 徐伟. 双层气囊隔振装置多目标协同姿态控制方法[J].国防科技大学学报,2019,41(06):70-74.
BU Wenjun, SHI Liang, HE Lin, XU Wei. Multi - objective coordinated attitude control method for dual layer air spring vibration isolation mounting[J]. Journal of National University of Defense Technology, 2019,41(06):70-74.
[7] 秦文政,施亮. 大型浮筏姿态及弹性变形控制算法研究[J].振动与冲击,2021,40(04):94-98+178.
QIN WenZheng, SHI Liang. A study on an attitude and elastic deformation control algorithm of large floating raft[J]. Journal of Vibration and Shock, 2019,41(06):70-74.
[8] HE Lin, XU Wei, BU Wenjun, et al. Dynamic analysis and design of air spring mounting system for marine propulsion system[J]. Journal of Sound Vibration, 2014, 333(20):4912-4929.
[9] 徐伟,邱元燃,谢向荣. 永磁推进电机新型复合隔振装置研制[J].船舶力学, 2019,23(10):1249-1256.
XU Wei, QIU Yuanran, XIE Xiangrong. A novel compound mounting system for permanent magnet propulsion motor[J]. Journal of Ship Mechanics, 2019,23(10):1249-1256.
[10] 李正民, 何琳, 徐伟,等. 轴承润滑特性对船舶推进轴系校中的影响[J]. 中国舰船研究, 2016, 11(006):104-111.
LI Zhengmin, HE Lin, Xu Wei, et al. The influence of bearing lubrication characteristics on marine propulsion shaft alignment[J]. Chinese Journal of Ship Research, 2016, 11(006):104-111.
[11] ZHANG Yuanchao, XU Wei, LI Zhengmin, YIN Lihang. Design and dynamic analysis of low-frequency mounting system for marine thrust bearing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021,43(2).
[12] 尹红升,刘金林,施亮, 等. 船舶柔性推进轴系校中特性研究[J].推进技术, 2021, 1-9.
YIN Hongsheng, LIU Jinsen, SHI Liang, et al. Research on alignment characteristics of flexible propulsion shafting[J]. Propulsion technology, 2021, 1-9.
[13] LI Yan, HE Lin, SHUAI Changgeng, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound Vibration, 2017, 407:226-239.
[14] 方媛媛,夏兆旺,Waters T P,左言言. 船舶辅机浮筏半主动非线性隔振系统振动特性分析[J].船舶力学,2019,23(05):583-590.
FANG Yuanyuan, XIA Zhaowang, Waters T P, ZUO Yanyan. Vibration characteristic analysis of floating-raft semi-active isolation system based on MR damper[J]. Journal of Ship Mechanics,2019,23(05):583-590.
[15] Kim Dongwon, Lee Jinoh. Robust control of a system with a pneumatic spring[J]. Journal of the Franklin Institute, 2021, 358(1).
[16] 金著, 何琳, 赵应龙. 气囊隔振器囊体帘线等效平衡缠绕角理论与试验研究[J]. 振动与冲击, 2018, 037(011):160-165.
JIN Zhu, HE Lin, ZHAO Yinglong. Theoretical study and tests for cord’s equivalent equilibrium winding angle of an air spring capsule[J]. Journal of Vibration and Shock, 2018, 037(011):160-165.
[17] 李东方,赵应龙. 长圆形囊式气囊隔振器垂向刚度特性分析[J]. 振动与冲击, 2020, 373(17):296-302.
LI Dongfang, ZHAO Yinglong. Vertical stiffness characteristics of a long round bellow type airbag isolator[J]. Journal of Vibration and Shock, 2020, 373(17):296-302.
[18] Zenker Benjamin, Schurmann Robert, Merchel Sebastian, Altinsoy M. Ercan. Improved sound radiation of flat panel loudspeakers using the local air spring effect[J]. Applied Sciences,2020,10(24).
[19] 计方,张华栋,李国楠,吴铭. 舰船隔振器安装参数与隔振效果相关性试验研究[J].振动与冲击,2018,37(19):118-123.
JI Fang, ZHANG Huadong, LI Guolan, WU Min. Tests for correlation between ship vibration isolator installation
parameters and vibration isolation effect[J]. Journal of Vibration and Shock,2018,37(19):118-123.
[20] 程果,何琳,王迎春,崔立林. 船舶降噪工程技术集成优化方法[J].国防科技大学学报,2019,41(06):88-93.
CHENG Guo, HE Lin, WANG Yingchun, CHUI Lilin. Optimized composition method of the ships noise - control techniques[J]. National University of Defense Technology,2019,41(06):88-93.

PDF(1239 KB)

405

Accesses

0

Citation

Detail

段落导航
相关文章

/