动态模式分解及其在轴承早期故障诊断中的应用

文明1,2,党章1,2,3,余震1,2,吕勇1,2魏国前1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 313-320.

PDF(1569 KB)
PDF(1569 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 313-320.
论文

动态模式分解及其在轴承早期故障诊断中的应用

  • 文明1,2,党章1,2,3,余震1,2,吕勇1,2魏国前1,2
作者信息 +

Dynamic mode decomposition and its application in early bearing fault diagnosis

  • WEN Ming1,2, DANG Zhang1,2,3, YU Zhen1,2, L Yong1,2, WEI Guoqian1,2
Author information +
文章历史 +

摘要

滚动轴承是装备制造业中关键基础零部件,其在服役过程中的工作状态直接决定着主机产品的性能、质量和可靠性,有效的轴承早期故障监督检测技术是实现设备预防维修的重要保证。提出将动态模式分解(DMD)算法改进后应用于轴承早期故障信号的特征提取中,传感器采集得到的原始时间序列通过投影降噪后进行动态模式分解,采用软阈值法自适应地根据原始信号噪声水平得到若干单频模式,对这些模式分量进行多尺度排列熵值计算,通过阈值法筛选出原始动力学系统中的低秩成分,对其进行恢复重构后提取早期故障特征频率。在仿真信号和实测信号的实验研究中验证了本文提出方法的有效性。

Abstract

Rolling bearing is a key component in the equipment manufacturing industry, its working status in the service process directly determines the performance, quality and reliability of the host products. Effective supervision and detection technology for early fault of bearing is an important guarantee for the equipment preventive maintenance. An improved dynamic mode decomposition (DMD) algorithm was proposed and applied to early fault extraction of bearing signals. The original time series collected by the sensor was decomposed by DMD after projection denoising, then the soft threshold method was adopted to obtain several single-frequency modes adaptively according to the noise level of  original signal. Multi-scale permutation entropy values of these modes were calculated next, the low-rank components in the original dynamic system were picked out by the threshold method. After the reconstruction, the early fault frequencies were extracted. The effectiveness of the proposed algorithm was verified with experimental study on simulation signal and measured signal.

关键词

动态模式分解 / 多尺度排列熵 / 自适应截断秩 / 特征提取

Key words

dynamic mode decomposition / multi-scale permutation entropy / adaptive truncated rank / feature extraction

引用本文

导出引用
文明1,2,党章1,2,3,余震1,2,吕勇1,2魏国前1,2. 动态模式分解及其在轴承早期故障诊断中的应用[J]. 振动与冲击, 2022, 41(12): 313-320
WEN Ming1,2, DANG Zhang1,2,3, YU Zhen1,2, L Yong1,2, WEI Guoqian1,2. Dynamic mode decomposition and its application in early bearing fault diagnosis[J]. Journal of Vibration and Shock, 2022, 41(12): 313-320

参考文献

[1]唐贵基,闫晓丽,王晓龙.基于Chen系统的滚动轴承早期微弱故障检测方法研究[J].振动与冲击,2020,39(20): 128-133+141.
TANG Guiji, YAN Xiaoli, WANG Xiaolong. Research on Early Weak Fault Detection Method of Rolling Bearing Based on Chen System[J].Journal of Vibration and Shock, 2020, 39(20):128-133+141.
[2]马天霆,孙振波,邓敏强,等.基于RSBLMD算法的风机滚动轴承早期故障诊断[J].动力工程学报,2020,40(12): 982-987.
MA Tianting,SUN Zhenbo,DENG Minqiang, et al.Early fault diagnosis of fan rolling bearing based on RSBLMD algorithm[J].Journal of Power Engineering, 2020,40(12): 982-987.
[3]于明奇,夏均忠,白云川,等.基于格点搜索法的MOMEDA在滚动轴承故障特征提取中的应用[J].军事交通学院学报,2018,20(03):50-55.
YU Mingqi, XIA Junzhong, BAI Yunchuan, et al.The application of MOMEDA based on grid search method in the extraction of rolling bearing fault features[J].Journal of the Military Transportation Institute,2018,20(03):50-55.
[4]郑义,岳建海,焦静,等.基于参数优化变分模态分解的滚动轴承故障特征提取方法[J].振动与冲击,2021,40(01):86-94.
ZHENG Yi,YUE Jianhai,JIAO Jing, et al.Fault feature extraction method of rolling bearing based on parameter optimization variational modal decomposition[J].Vibration and Shock,2021,40(01):86-94.
[5]冯志鹏,褚福磊,左明健.机械设备系统复杂非平稳信号分析方法原理及故障诊断应用[M].北京:科学出版社.2018.
FENG Zhipeng, CHU Fulei, ZUO Mingjian. Principles and fault diagnosis applications of complex non-stationary signal analysis methods for mechanical equipment systems[M]. Beijing: Science Press. 2018.
[6] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings Mathematical Physical & Engineering Sciences,1998, 454: 679-699.
[7] Smith, Jonathan. (2006). The local mean decomposition and its application to EEG perception data[J].Journal of the Royal Society, Interface / the Royal Society. 2. 443-54. 10.1098/rsif. 2005.0058.
[8] DRAGOMIRETSKIY K,DOMINIQUE Z. Variational mode decomposition[J].IEEE Transactions on Signal Processing, 2014,62(3): 531 - 544
[9]朱天煦,臧朝平.基于PCA-LMD的滚动轴承信号混合特征选取与故障诊断[J].航空发动机,2020,46(05):14-21.
ZHU Tianxu, ZANG Chaoping.The signal hybrid feature selection and fault diagnosis of rolling bearing based on PCA-LMD[J].Aeroengine,2020,46(05):14-21.
[10]施杰,伍星,刘韬.基于MPDE-EEMD及自适应共振解调的轴承故障特征提取方法[J].电子测量与仪器学报,2020,34(09):47-54.
SHI Jie,WU Xing,LIU Tao.Bearing fault feature extraction method based on MPDE-EEMD and adaptive resonance demodulation[J].Journal of Electronic Measurement and Instrument,2020,34(09):47-54.
[11]王育炜,韩秋实,王红军,等.滚动轴承VMD能量熵与PNN故障模式识别研究[J].组合机床与自动化加工技术,2020(04):47-50.
WANG Yuwei,HAN Qiushi,WANG Hongjun,et al.Research on VMD energy entropy of rolling bearing and PNN fault pattern recognition[J].Modular Machine Tool and Automatic Manufacturing Technology,2020(04):47-50.
[12] Rowley, C W; Mezic, I; Bagheri, S; et al. Henningson, D. Spectral analysis of nonlinear flows[J].Journal of Fluid Mechanics ,2009, 641, 115–127.
[13]Taira, Kunihiko & Brunton, Steven & Dawson, et al. Modal Analysis of Fluid Flows: An Overview. AIAA Journal. 55. 10.2514/1.J056060.
[14] Schmid P J, Li L, Juniper M P, et al. Applications of the dynamic mode decomposition[J]. Theoretical and Computational Fluid Dynamics, 2011, 25(4): 249-259.
[15]党章. 改进的动力学模式分解理论及其在轴承故障诊断中的应用研究[D].武汉科技大学,2020.
DANG Zhang. Improved dynamic mode decomposition theory and its application in bearing fault diagnosis [D]. Wuhan University of Science and Technology, 2020.
[16]张伟,白恺,宋鹏,等.基于VMD和奇异值能量差分谱的风机滚动轴承故障特征提取方法[J].华北电力技术,2017(03):59-64.
ZHANG Wei,BAI Kai,SONG Peng, et al.Fault feature extraction method of fan rolling bearing based on VMD and singular value energy difference spectrum[J].North China Electric Power Technology,2017(03):59-64.
【  [17]刘敏,张英堂,李志宁,等. 奇异值能量标准谱在机械振动信号降噪中的应用研究[J]. 机械科学与技术,2017,36(1):46-51.
LIU Min, ZHANG Yingtang, LI Zhining, et al. Study on the Application of singular value Energy Standard Spectrum in noise reduction of Mechanical Vibration signals [J]. Mechanical Science and Technology, 2017. 36 (1): 46-51.
[18] 唐贵基,李楠楠,王晓龙.综合改进奇异谱分解和奇异值分解的齿轮故障特征提取方法[J].中国机械工程,2020,31(24):2988-2996.
         TANG Guiji, LI Nannan, WANG Xiaolong. Gear fault feature extraction method based on improved singular spectrum decomposition and singular value decomposition[J]. Chinese Mechanical Engineering, 2020,531 (24): 2988 -2996.
[19] Gavish M, Donoho D L. The Optimal Hard Threshold for Singular Values is. IEEE Transactions on Information Theory,2014,60(8): 5040 – 5053.
[20] BANDT C,POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters,2002 ,88 (17) :174102.
[21] AZIZ W,ARIF M. Multiscale permutation entropy of physiological time series[C]//2005 Pakistan Section Multitopic Conference. Karachi:INMIC,2005.
[22]鲁铁定,谢建雄. EEMD-多尺度排列熵的GPS高程时间序列降噪方法[J].大地测量与地球动力学,2021,41(2):111-115, 220.
LU Tieding, XIE Jianxiong. Denoising method of GPS height time series based on EEMD- multi-scale permutation entropy [J]. Geodesy and Geodynamics, 2021 , 41 (2): 111-115,220.
[23] Randall, RB; Antoni, J; Chobsaard, S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J].Mechanical Systems and Signal Processing ,2001, 15: 945–962.
[24] An, Xueli & Pan, Luoping. (2017). Bearing fault diagnosis of a wind turbine based on variational mode decomposition and permutation entropy. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 231.1748006X1769349.10.1177/1748006X17693492.
[25] Zunino, Luciano & Olivares, Felipe & Scholkmann, et al. Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions[J]. Physics Letters A,2017,381(22): 1883-1892.
[26] Li, Yongbo & Xu, Minqiang & Wei, et al. (2015). A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement,2016,77: 80-94.
[27] Intelligent Systems Division.Available online:
https://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/#bearing(accessed on 27 August 2017).
[28] 胡亮,董兆宇,戴煜林,等.深沟球轴承系列特征频率计算分析[J].噪声与振动控制,2015,35(03):169-172+194.
HU Liang,DONG Zhaoyu,DAI Yulin,et al.Calculation and Analysis of the Characteristic Frequency of Deep Groove Ball Bearings[J].Noise and Vibration Control, 2015,35(03): 169-172+194.

PDF(1569 KB)

Accesses

Citation

Detail

段落导航
相关文章

/