声子晶体型浮置板轨道低频减振性能研究

盛曦,曾会柯,石灿,杜彦良

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 36-42.

PDF(1610 KB)
PDF(1610 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 36-42.
论文

声子晶体型浮置板轨道低频减振性能研究

  • 盛曦,曾会柯,石灿,杜彦良
作者信息 +

A study on low-frequency vibration-mitigation performance of a phononic crystal floating slab track

  • SHENG Xi,ZENG Huike,SHI Can,DU Yanliang
Author information +
文章历史 +

摘要

地铁列车运行诱发的低频环境振动会对人体、精密仪器和建筑物产生不利影响,引起了人们的普遍重视。基于声子晶体理论,在钢弹簧浮置板轨道(floating slab track,FST)结构基础上,提出了一种声子晶体型浮置板轨道结构,通过引入弹性波带隙提升其低频减振性能。建立了周期半轨道模型,采用谱元法对其进行求解,揭示了声子晶体型浮置板轨道的能带结构与带隙特性;建立了有限半轨道模型,采用谱元法计算分析了不同轨道部件的位移导纳幅值,传递率与基础插入损失。结果表明:基础、浮置板和钢轨位移导纳幅值在低频带隙范围内的峰值显著降低,相比于钢弹簧浮置板轨道,声子晶体型浮置板轨道不仅低频减振性能得以提升,其轨道结构振动响应也有所减弱。

Abstract

Low-frequency ground-borne vibrations induced by subway trains can have adverse impacts on humans, precision instruments and buildings, causing universal attentions. Using the phononic crystal theory, this paper proposes a novel phononic crystal floating slab track (FST) structure based on the steel-spring FST. The low-frequency vibration-mitigation performance can be improved by the introduction of the elastic wave band gap behaviors. The periodic half-track model for the calculation of the band gap is established and then solved by the spectral element method. The band structure and the band gap characteristics of the phononic crystal FST are revealed. Subsequently, the receptance amplitudes of the track components, the transmissibility and the insertion loss of the infrastructure are calculated with the finite half-track model which is also solved by the spectral element method. The results show that the peak values of receptance amplitudes of the infrastructure, the floating slab and the rail are notably decreased within the low-frequency band gap range. Compared to the steel-spring FST, the phononic crystal FST realizes the improvement of the low-frequency vibration-mitigation performance as well as the attenuation of the vibration response of the track structure.

关键词

声子晶体 / 带隙特性 / 谱元法 / 低频减振

Key words

phononic crystal / band gap characteristic / spectral element method / low-frequency vibration mitigation

引用本文

导出引用
盛曦,曾会柯,石灿,杜彦良. 声子晶体型浮置板轨道低频减振性能研究[J]. 振动与冲击, 2022, 41(12): 36-42
SHENG Xi,ZENG Huike,SHI Can,DU Yanliang. A study on low-frequency vibration-mitigation performance of a phononic crystal floating slab track[J]. Journal of Vibration and Shock, 2022, 41(12): 36-42

参考文献

[1]  杨吉忠,颜华,魏永幸,等.基于TRIZ理论的低频减振轨道结构研究[J].铁道工程学报,2015,32(04):60-64.
Yang J Z, Yan H, Wei Y X, et al. Research on the low frequency vibration attenuation in track structure based on TRIZ theory[J]. Journal of Railway Engineering society, 2015, 32(04):60-64.
[2]  刘维宁,丁德云,李克飞,等.钢弹簧浮置板轨道低频特征试验研究[J].土木工程学报,2011,44(08):118-125.
Liu W N, Ding D Y, Li K F, et al. Experimental study of the low-frequency vibration characteristics of steel spring floating slab track[J]. China Civil Engineering Journal, 2011, 44(08):118-125.
[3]  Hui C K, Ng C F. The effects of floating slab bending resonances on the vibration isolation of rail viaduct[J]. Applied Acoustics, 2009, 70(6): 830-844.
[4]  丁德云,刘维宁,张宝才,等.浮置板轨道的模态分析[J].铁道学报,2008,30(03):61-64.
Ding D y, Liu W N, Zhang G C, et al. Modal analysis on the floating slab track[J]. Journal of the China Railway Society, 2008, 30(03):61-64.
[5]  杨吉忠,张雷,蔡成标,等.低频域多模态制振轨道板设计[J].西南交通大学学报,2015,50(06):1082-1087.
Yang J Z, Zhang L, Cai C B, et al. Multi-mode vibration attenuation track in low-frequency domain[J]. Journal of Southwest Jiaotong University, 2015, 50(06):1082-1087.
[6]  张龙庆,朱胜阳,蔡成标,等.动力吸振器在浮置板轨道低频振动控制中的应用[J].工程力学,2016,33(09):212-219.
Zhang L Q, Zhu S Y, Cai C B, et al. Application of dynamic vibration absorbers in low-frequency vibration control of floating slab tracks[J]. Engineering Mechanics, 2016, 33(09):212-219.
[7]  Mead D M. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995[J]. Journal of sound and vibration, 1996, 190(3): 495-524.
[8]  冯青松,杨舟,梁玉雄,等.长度调制的声子晶体梁弯曲振动带隙特性分析[J].噪声与振动控制,2020,40(04):1-8.
Feng Q S, Yang Z, Liang Y X, et al. Analysis of the Bending Vibration Band Gap Characteristics of a Length-adjustable Phononic Crystal Beam[J]. Noise and Vibration Control, 2020, 40(04):1-8.
[9]  郁殿龙,温激鸿,陈圣兵,等.轴向载荷周期结构梁的弯曲振动带隙特性[J].振动与冲击,2010,29(03):85-88+206.
Yu D L, Wen J H, Chen S B, et al. Flexural vibration band gaps in axially loaded periodic beam structure[J]. Journal of Vibration and Shock, 2010, 29(03):85-88+206.
[10] Huang J, Liu W, Shi Z. Surface-wave attenuation zone of layered periodic structures and feasible application in ground vibration reduction[J]. Construction and Building Materials, 2017, 141: 1-11.
[11] Sheng X, Zhao C, Yi Q, et al. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms[J]. Journal of Zhejiang University Science A: Applied Physics & Engineering, 2018, 19(9): 663-675.
[12] Zhao H J, Guo H W, Gao M X, et al. Vibration band gaps in double-vibrator pillared phononic crystal plate[J]. Journal of Applied Physics, 2016, 119(1): 014903.
[13] Wu Z J, Li F M, Zhang C. Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method[J]. Journal of Sound and Vibration, 2015, 341: 162-173.
[14] 吴神花,雷晓燕.基于谱元法的车辆-轨道结构频域振动特性研究[J].振动与冲击,2021,40(05):1-7.
Wu S H, Lei X Y. Frequency domain vibration characteristics of a vehicle-track structure based on spectral element method[J]. Journal of Vibration and Shock, 2021, 40(05):1-7.
[15] Sheng X, Zhao C, Wang P, et al. Study on transmission characteristics of vertical rail vibrations in ballast track[J]. Mathematical Problems in Engineering, 2017, 2017.
[16] Xiao Y, Wen J, Yu D, et al. Flexural wave propagation in beams with periodically attached vibration absorbers: band-gap behavior and band formation mechanisms[J]. Journal of Sound and Vibration, 2013, 332(4): 867-893.

PDF(1610 KB)

378

Accesses

0

Citation

Detail

段落导航
相关文章

/