两边连接侧边加劲钢板剪力墙滞回性能研究

李洋1,2,赵啸峰1,谭平3,4,周福霖1,3,4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 43-50.

PDF(3226 KB)
PDF(3226 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 43-50.
论文

两边连接侧边加劲钢板剪力墙滞回性能研究

  • 李洋1,2,赵啸峰1,谭平3,4,周福霖1,3,4
作者信息 +

Hysteretic behaviour of steel plate shear wall with two-side connections and side stiffened

  • LI Yang1,2,ZHAO Xiaofeng1,TAN Ping3,4,ZHOU Fulin1,3,4
Author information +
文章历史 +

摘要

本文针对两边连接侧边加劲钢板剪力墙,设计了1/3缩尺模型试件,通过低周反复加载对其滞回性能进行了试验研究。采用有限元软件ABAQUS建立了该试件的有限元分析模型,对其滞回性能进行了数值模拟,并将分析结果与试验结果进行了对比,验证了有限元模型的可靠性;利用该有限元分析模型重点考察了试件高宽比、高厚比及加劲肋厚度对两边连接侧边加劲钢板剪力墙滞回性能的影响规律。研究表明,两边连接侧边加劲钢板剪力墙滞回曲线其饱满程度随高宽比的降低而下降,随高厚比的降低而提高,与加劲肋厚度的变化无关;单位累计耗能随高宽比的降低、高厚比的降低以及加劲肋厚度的增大有不同程度的提高,其中高厚比的影响最为显著;极限平均剪应力的变化规律与单位累计耗能一致,并接近剪切屈服强度。上述研究,为钢板剪力墙的设计应用提供了依据。

Abstract

This paper designed one specimen in the light of a steel plate shear wall with two-side connections and side stiffened. This specimen was tested under cyclic loading at a scale ratio of 1/3 to investigate its hysteretic behavior. Finite element analysis model of this specimen was established by using finite element software ABAQUS to simulate its hysteretic behaviors. Finite element results and experimental results were made a comparison to verify the reliability of the finite element model. The influences of aspect ratio, height-thickness ratio and thickness of stiffener on hysteretic behaviors of this steel plate shear wall with two-side connections and side stiffened were investigated by using the verified finite element model. Research results show that the full degree of hysteresis curve, which is not related to the variation of the thickness of the stiffeners, decreases with the decrease of aspect ratio and increases with the decrease of the height-thickness ratio. Cumulative energy consumption per unit increases with the decrease of the aspect ratio, with the decrease of height-thickness ratio and with the increase of the thickness of the stiffeners, and the influence of height-thickness ratio is the most significant among them. The change regulations of maximum average shear stress is in accord with cumulative energy consumption per unit and maximum average shear stress is close to the shear yield strength gradually. The above research provides a basis for the design and application of steel plate shear wall.

关键词

钢板剪力墙 / 滞回曲线 / 高宽比 / 高厚比 / 加劲肋厚度

Key words

steel plate shear wall / hysteretic curve / aspect ratio / height-thickness ratio / thickness of stiffener

引用本文

导出引用
李洋1,2,赵啸峰1,谭平3,4,周福霖1,3,4. 两边连接侧边加劲钢板剪力墙滞回性能研究[J]. 振动与冲击, 2022, 41(12): 43-50
LI Yang1,2,ZHAO Xiaofeng1,TAN Ping3,4,ZHOU Fulin1,3,4. Hysteretic behaviour of steel plate shear wall with two-side connections and side stiffened[J]. Journal of Vibration and Shock, 2022, 41(12): 43-50

参考文献

[1] I. F. Seilie, J. D. Hooper. Steel plate shear walls: practical design and construction [J]. Modern Steel Construction, 2005: 29-33.
[2] J. Ericksen, R. Sabelli. A closer look at steel plate shear walls [J]. Modern Steel Construction, 2008: 63-67.
[3] J. W. Berman, M. Bruneau. Plastic analysis and design of steel plate shear walls [J]. Journal of Structural Engineering ASCE, 2003, 129(11): 1148-1156.
[4] 陈国栋,郭彦林,范珍,韩艳.钢板剪力墙低周反复荷载试验研究[J].建筑结构学报,2004, 25(2): 19-26.
CHEN Guodong, GUO Yanlin, FAN Zhen, HAN Yan. Cyclic test of steel plate shear walls [J]. Journal of Building Structures, 2004, 25(2): 19-26.
[5] 苏幼坡,刘英利,王绍杰.薄钢板剪力墙抗震性能试验研究[J].地震工程与工程振动,2002, 22(4): 81-84.
SU Youpo, LIU Yingli, WANG Shaojie. Experimental study of anti-seismic behavior of thin steel plate-shear walls[J].  Earthquake Engineering and Engineering Dynamics, 2002, 22(4): 81-84.
[6] ANSI/AISC 341-05. Seismic Provisions for Structural Steel Buildings [S]. American Institute of Steel Construction, 2005.
[7] CAN/CSA-S16-09. Design of Steel Structures [S]. Canadian Standard Association, Toronto, Ontario, 1994.
[8] JGJ/T 380-2015钢板剪力墙技术规程[S].北京:中国建筑工业出版社,2016.
JGJ/T 380-2015 Technical specification for steel plate shear walls [S]. Beijing: China Architecture & Building Press, 2016.
[9] J. G. Yu, X. T. Feng, B. Li, J. P. Hao, E. Ahmed, M. L. Ge. Performance of steel plate shear walls with axially loaded vertical boundary elements [J]. Thin-Walled Structures, 2018, 125: 152-163.
[10] G. A. Mojtaba, G. Majid, A. K. Mohammad. Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading [J]. Engineering Structures, 2020, 203: 109866.
[11] 马欣伯.两边连接钢板剪力墙及组合剪力墙抗震性能研究[D].哈尔滨:哈尔滨工业大学,2009.
MA Xinbo. Seismic behaviour of steel plate shear walls and composite shear walls with two-side connections [D]. Harbin: Harbin Institute of Technology, 2009.
[12] 马欣伯,张素梅,郭兰慧.两边连接钢板剪力墙试验与理论分析[J].天津大学学报,2010, 43(8): 697-704.
MA Xinbo, ZHANG Sumei, GUO Lanhui. Theoretical analysis and experiment on steel plate shear wall with two-side connections [J]. Journal of Tianjin University, 2010, 43(8): 697-704.
[13] 郝际平,曹春华,王迎春,李峰. 开洞薄钢板剪力墙低周反复荷载试验研究[J].地震工程与工程振动,2009, 29(2): 79-85.
HAO Jiping, CAO Chunhua, WANG Yingchun, LI Feng. Test on thin steel plate shear wall with opening under cyclic loading [J]. Earthquake Engineering and Engineering Dynamics, 2009, 29(2): 79-85.
[14] 孙国华,顾强,何若全,方有珍.钢板剪力墙结构的耗能能力[J].计算力学学报,2013, 30(3): 422-428.
SUN Guohua, GU Qiang, HE Ruoquan, FANG Youzhen. Energy dissipation capacity of steel plate shear walls [J]. Chinese Journal of Computational Mechanics, 2013, 30(3): 422-428.
[15] GB/T 228.1-2010金属材料 拉伸试验 第1部分:室温试验方法[S].北京:中国建筑工业出版社,2011.
GB/T 228.1-2010 Metallic materials-Tensile testing-Part 1: Method of test at room temperature [S]. Beijing: China Architecture & Building Press, 2011.
[16] JGJ/T101-2015建筑抗震试验规程[S].北京:中国建筑工业出版社,2015.
JGJ/T101-2015 Specification for seismic test of buildings [S]. Beijing: China Architecture & Building Press, 2015.
[17] 陈国栋.钢板剪力墙结构性能研究[D].北京:清华大学,2002.
CHEN Guodong. The investigation to structural behavior of steel plate shear walls [D]. Beijing: Tsinghua University, 2002.
[18] 王萌,杨维国. 薄钢板剪力墙结构滞回行为研究[J].建筑结构学报,2015, 36(1): 68-77.
WANG Meng, YANG Weiguo. Hysteretic behaviors study of thin steel plate shear wall structures [J]. Journal of Building Structures, 2015, 36(1): 68-77.
[19] M. Wang, W. G. Yang. Equivalent constitutive model of steel plate shear wall structures [J]. Thin-Walled Structures, 2018, 124: 415-429.
[20] 樊春雷,郝际平,田炜烽. 薄钢板剪力墙结构试验研究及简化模型分析[J].工程力学,2016, 33(6): 34-45.
FAN Chunlei, HAO Jiping, TIAN Weifeng. Experimental study and simplified model analysis of thin steel plate shear wall structures [J]. Engineering Mechanics, 2016, 33(6): 34-45.
[21] GB50010-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
GB50010-2010 Code for seismic design of buildings [S]. Beijing: China Architecture & Building Press, 2010.
[22] 郭彦林,周明.非加劲与防屈曲钢板剪力墙性能及设计理论的研究现状[J].建筑结构学报,2011, 32(1): 1-16.
GUO Yanlin, ZHOU Ming. An overview of current state-of-the-art in behavior and design theory for unstiffened or buckling-restrained steel plate shear walls [J]. Journal of Building Structures, 2011, 32(1): 1-16.
[23] R. Amirhosein, D. Ardeshir, R. Alireza. Experimental and numerical research on steel plate shear wall with infill plate connected to beam only [J]. Civil Engineering Journal, 2018, 4(3): 526-538.
[24] F. Malkeshi, M. Banazadeh, S.A. Serajzadeh. Micro-finite element damage modeling in steel plate shear walls [J]. Journal of Constructional Steel Research, 2020, 170: 106074.
[25] 郭彦林,董全利,周明.防屈曲钢板剪力墙滞回性能理论与试验研究[J].建筑结构学报,2009, 30(1): 31-39, 47.
GUO Yanlin, DONG Quanli, ZHOU Ming. Tests and analysis on hysteretic behavior of buckling-restrained steel plate shear wall [J]. Journal of Building Structures, 2009, 30(1): 31-39, 47.

PDF(3226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/