非线性Zener模型的求解及多态共存机理研究

俞力洋,黄然,丁旺才,吴少培,李国芳

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 51-58.

PDF(1931 KB)
PDF(1931 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 51-58.
论文

非线性Zener模型的求解及多态共存机理研究

  • 俞力洋,黄然,丁旺才,吴少培,李国芳
作者信息 +

Solution and polymorphic coexistence mechanism study of a nonlinear Zener model

  • YU Liyang,HUANG Ran,DING Wangcai,WU Shaopei,LI Guofang
Author information +
文章历史 +

摘要

非线性Zener模型可准确反映中低频范围内橡胶隔振系统的力学特性,受系统准对称特性和迟滞特性的影响,系统会存在分岔、混沌、多态共存等复杂非线性动力学行为。采用复数变量法和谐波平衡法求解了系统的瞬态响应与稳态响应,并分别与数值结果及UM软件仿真结果进行对比,研究了系统在叉式分岔、鞍结分岔、倍周期分岔和边界激变诱导下多态共存的形成机理及周期运动转迁规律。结果表明:系统在主共振区附近鞍结分岔的诱导下形成一对自对称周期运动的共存;在叉式分岔诱导下产生一对反对称周期运动的共存;在叉式分岔后鞍结分岔的诱导下系统产生两对反对称周期运动的共存;系统叉式分岔与逆叉式分岔构造出“ 多态域",在“ 多态域"中,系统有一对反对称周期倍化序列的共存及一对反对称混沌运动的共存。

Abstract

Nonlinear Zener model can accurately reflect the mechanical properties of rubber vibration isolation system in the mid-low frequency range. Due to the quasi-symmetry and hysteresis characteristics of the system, the system will have complex nonlinear dynamic behaviors such as bifurcation, chaos and polymorphism coexistence. In this paper, the complex variable method and harmonic balance method are used to solve the transient response and steady-state response of the system. The numerical results and UM software simulation results are compared. The formation mechanism and periodic motion transition law of multi-state coexistence of the system induced by fork bifurcation, saddle-node bifurcation, period doubling bifurcation and boundary crisis are studied. The results show that the system forms the coexistence of a pair of self-symmetric periodic motions induced by-node bifurcation near the main resonance region. A pair of anti-symmetric periodic motions coexist in the system induced by fork bifurcation. Under the induction of saddle-node bifurcation after fork bifurcation, the system generates the coexistence of two anti-symmetric periodic motions. The fork bifurcation and inverse fork bifurcation of the system construct the ‘  polymorphic domain’. In the ‘  polymorphic domain’, the system has the coexistence of a pair of antisymmetric periodic doubling sequences and a pair of anti-symmetric chaotic motions.

关键词

Zener模型 / 橡胶隔振系统 / 幅频特性 / 多初值分岔 / 运动特性

Key words

Zener model / rubber vibration isolation / amplitude-frequency characteristic / multiple initial values bifurcation / motion characteristics

引用本文

导出引用
俞力洋,黄然,丁旺才,吴少培,李国芳. 非线性Zener模型的求解及多态共存机理研究[J]. 振动与冲击, 2022, 41(12): 51-58
YU Liyang,HUANG Ran,DING Wangcai,WU Shaopei,LI Guofang. Solution and polymorphic coexistence mechanism study of a nonlinear Zener model[J]. Journal of Vibration and Shock, 2022, 41(12): 51-58

参考文献

[1] 胡海岩. 分段光滑机械系统动力学的进展[J]. 振动工程学报,1995(04):331-341.
   Hu Haiyan. Advances in Dynamics of Piecewise- Smooth Mechanical Systems[J]. Journal of Vibration Engineering,1995,8(04):331-341.
[2] 张振先,杨东晓,池茂儒. 抗蛇行减振器的模型研究[J]. 机械,2015,42(07):1-4+31.
   Zhang Zhenxian,Yang Dongxiao,Chi Maoru. Study on calculation model of anti-yaw damper[J]. Machinery,2015,42(07):1-4+31.
[3] 李国芳,俞力洋,丁旺才,等. 一类无足自驱动系统的运动特性分析[J]. 振动与冲击,2020,39(14):9-16.
   Li Guofang,Yu Liyang,Ding Wangcai,et al. Motion characteristics analysis of a wheel-free self-driving system[J]. Journal of Vibration and Shock,2020,39(14):9-16.
[4] 刘付山,曾志平,郭无极,等. 考虑轮轨非线性接触的车辆-轨道-桥梁垂向耦合系统随机振动分析[J]. 振动工程学报,2020,33(01):139-148.
   Liu Fushan,Zeng Zhiping,Guo Wuji,et al. Random vibration analysis of vehicle-track-bridge vertical coupling system considering wheel-rail nonlinear contact[J]. Journal of Vibration Engineering,2020,33(01):139-148.
[5] 李创第,李暾,尉宵腾,等. Maxwell阻尼耗能结构非平稳地震响应解析分析[J]. 振动与冲击,2016,35(19):172-180.
   Li Chuangdi,Li Tun,Wei Xiaoteng,et al. Response analysis of energy dissipation structures with Maxwell dampers under non-stationary seismic excitation[J]. Journal of Vibration and Shock,2016,35(19):172-180.
[6] Zheng Wang,Tianqi Luo. Multiformity of periodic-impact motions of a harmonically forced soft-impacting system and experimental verification based on an electronic circuit.[J]. Chaos,Solitons & Fractals,2017,94:23-36.
[7]王晨,罗世辉,樊慧,等. 高原机车悬挂方案对车辆振动特性的影响[J]. 振动.测试与诊断,2018,38(03):583-589.
   Wang Chen,Luo Shihui,Fan Hui,et al.Influence of suspension scheme of plateau locomotive on vehicle vibration characteristics[J]. Journal of Vibration,Measurement & Diagnosis,2018,38(03):583-589.
[8] 唐振寰,罗贵火,陈伟,等. 橡胶隔振器非线性分数导数动力学模型研究[J]. 中国机械工程,2013,24(18):2475-2479.
   Tang Zhenhuan,Luo Guihuo,Chen Wei,et al. Research on Dynamics Model of Rubber Isolator about Nonlinear Fractional Derivatives[J]. China Mechanical Engineering,2013,24(18):2475-2479.
[9] 赵振东,雷雨成. 橡胶元件在汽车悬架中的应用分析[J]. 汽车技术,2006(01):19-22+35.
   Zhao Zhendong,Lei Yucheng. Analysis of Application of Rubber Units in Automotive Suspensions[J]. Automobile Technology,2006(01):19-22+35.
[10] 田金鑫. 潜航器中浮筏隔振系统的设计与应用研究[D].济南:山东大学,2020.
   Tian Jinxin. Research on Design and Application on Vibration Isolation System of Floating Raft in Underwater Vehicle[D]. Jinan:Shandong University,2020.
[11] 李继伟,丁旺才,李国芳. 多自由度非线性吸振器的连接方式及吸振效果[J]. 兰州交通大学学报,2017,36(01):96-101.
   Li Jiwei,Ding Wangcai,Li Guofang. Connection and Performance of a Vibration System with Mult-Degree of Freedom Nonlinear Energy Sink[J]. Journal of Lanzhou Jiaotong University,2017,36(01):96-101.
[12] J Zang,Tian-Chen Yuan,Ze-Qi Lu,et al. A lever-type nonlinear energy sink[J]. Journal of Sound and Vibration,2018,437:119-134.
[13]Aleksandar S. Okuka,Dušan Zorica. Fractional Burgers models in creep and stress relaxation tests[J]. Applied Mathematical Modelling,2020,77(2):1894-1935.
[14] Berg M. A nonlinear rubber spring model for vehicle dynamics analysis[J]. Vehicle System Dynamics,1998,29(S1):723-728.
[15] Dzierzek S. Experiment-based modeling of cylindrical rubber bushings for the simulation of wheel suspension dynamic behavior[J]. Training,2000,2014:05-05.
[16] 吴杰,上官文斌,潘孝勇. 采用超弹性—黏弹性—弹塑性本构模型的橡胶隔振器动态特性计算方法[J]. 机械工程学报,2010,46(14):109-114.
   Wu Jie,Shangguan Wenbin,Pan Xiaoyong. Computational Method for Dynamic Properties of Rubber Isolators Using Hyperelastic-viscoelastic-plastoelastic Constitutive Model [J]. Journal of Mechanical Engineering,2010,46(14):109-114.
[17] 杨俊. 橡胶弹簧动态特性研究[D]. 成都:西南交通大学,2015.
   Yang Jun. Study on Dynamic Characteristics of Rubber Spring[D]. Chengdu:Southwest Jiaotong University,2015.
[18] Pritz T. Analysis of four-parameter fractional derivative model of real solid materials[J]. Journal of Sound and Vibration,1996,195(1):103-115.
[19] 于增亮,张立军,余卓平. 橡胶衬套力学特性半经验参数化模型[J]. 机械工程学报,2010,46(14):115-123.
   Yu Zengliang,Zhang Lijun,Yu Zhuoping. Semi-Empirical Parameterized Dynamic Model of Rubber Bushing Mechanical Properties[J]. Journal of Mechanical Engineering,2010,46(14):115-123.
[20] 王孝然,申永军,杨绍普. 单自由度系统强迫振动下Kelvin模型和Maxwell模型的比较[J]. 石家庄铁道大学学报(自然科学版),2016,29(03):70-75.
   Wang Xiaoran,Shen Yongjun,Yang Shaopu. A Comparison Study on Kelvin and Maxwell Model for a Forced Single Degree-of-freedom System[J]. Journal of Shijiazhuang Tiedao University(Natural Science),2016,29(03):70-75.
[21] Xiaoran Wang,Tian He,Yongjun Shen,et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration,2019,463.
[22] 李壮壮,申永军,杨绍普,等. 基于惯容-弹簧-阻尼的结构减振研究[J]. 振动工程学报,2018,31(06):1061-1067.
   Li Zhuangzhuang,Shen Yongjun,Yang Shaopu,et al. Study on vibration mitigation based on inerter-spring-damping structure[J]. Journal of Vibration Engineering,2018,31(06):1061-1067.
[23] 陈炜. 基于复数变量法的非线性减振器理论分析与研究[D]. 西安:长安大学,2017.
   Chen Wei. Analysis and Research of Nonlinear Damper Based on Complex Variable Method[D]. Xi’an:Chang’an University,2017.
[24] 李飞,丁旺才. 多约束碰撞振动系统的粘滞运动分析[J].振动与冲击,2010,29(05):150-156+247.
   Li Fei,Ding Wangcai. Numerical analysis of a synchronous dual -rotor's steady -state response[J]. Journal of Vibration and Shock,2010,29(05):150-156+247.
[25] 李得洋,丁旺才,丁杰,等.单自由度含对称约束碰振系统周期运动的转迁规律分析[J].振动与冲击,2019,38(22):52-59.
   Li Deyang,Ding Wangcai,Ding Jie,et al.. Transition of periodic motions of a 1DOF vibro - impact system with symmetrical constraints[J]. Journal of Vibration and Shock,2019,38(22):52-59.
[26] Lucas de Haro Silva ,Paulo J. Paupitz Gonçalves ,David Wagg.On the dynamic behavior of the Zener model with nonlinear stiffness for harmonic vibration isolation[J]. Mechanical Systems and Signal Processing,2018,112:343-358.

PDF(1931 KB)

Accesses

Citation

Detail

段落导航
相关文章

/