深水大跨桥梁若发生地震,将会造成严重的破坏;桥梁横桥向抗震研究已经取得一定进展,对纵桥向抗震研究较少。以某深水大跨桥梁结构为原型,根据弹性相似准则,以规范波,El-Centro波和汶川地震波为输入地震动,进行大比尺全桥结构纵桥向水下振动台试验,分析了桥梁加速度动力放大系数、峰值加速度、峰值应变及峰值动水压力的变化情况,研究了桥梁结构在不同地震波不同水位不同峰值加速度作用下的动力响应规律。结果表明:全桥结构的基频规律与单一桥墩的不同,正常水位和半水水位比无水环境下的一阶频率分别增加0.11%和0.06%,而二阶频率分别减小0.07%和0.03%;地震作用下,水的存在会影响结构的动力响应,桥梁结构的动力响应与输入的地震频谱特性和水位高低有关,动水压力在桥梁最低端最大,且动水压力影响桥梁结构的应变。
Abstract
If an earthquake occurs on a deep-water long-span bridge, it will cause serious damages. Some progress has been study of the transverse direction seismic of the bridge, and there are few studies on the longitudinal direction seismic. Therefore, on the basis of the certain deep-water long-span bridge structure prototype, according to the elastic similitude law, the specification earthquake, El-Centro earthquake and Wenchuan earthquake are used as input ground motions, and carried out the deep-water long-span whole bridge structure longitudinal bridge underwater shaking table test, to analysis the bridge acceleration dynamic amplification factor, peak acceleration, peak strain, and peak hydrodynamic pressure curves, studied the bridge structure dynamic response under different earthquakes, different water depths and peak accelerations. The results show that the fundamental frequency of the whole bridge structure is different from a single pier. The first-order frequencies of the normal water depth and the half-water depth for without water environment increase by 0.11% and 0.06%, respectively; while the second-order frequency decreases by 0.07% and 0.03%, respectively. When under earthquake action, the presence of water affects the bridge structure dynamic response. The bridge structures dynamic response is related to the input earthquakes frequency spectrum characteristics and the water depths. The peak hydrodynamic pressure is the largest at the bottom of the bridge, and hydrodynamic pressure affects strain of the bridge structure.
关键词
深水大跨 /
整桥结构 /
水下振动台试验 /
加速度 /
动水压力
{{custom_keyword}} /
Key words
Deep-water long-span /
whole bridge /
underwater shaking table test /
acceleration /
hydrodynamic pressure
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王克海.桥梁抗震研究[M].北京:中国铁道出版社,2006.
[2] 王克海,李茜.桥梁抗震的研究进展[J].工程力学, 2007, 24(增刊Ⅱ): 75-82.
WANG Kehai,LI Qian. Research progress on aseismic design of bridges[J].Engineering Mechanics, 2007,24(Sup.Ⅱ):75-82.
[3] 秦泗凤.桥梁抗震性能评价的静力非线性分析方法研究[D].大连:大连理工大学, 2008.
[4] ATMACA B, YURDAKUL M, ATEŞ Ş. Nonlinear dynamic analysis of base isolated cable-stayed bridge under earthquake excitations [J]. Soil Dynamics and Earthquake Engineering, 2014, 66: 314-318.
[5] 黄信,李忠献. 动水压力作用对深水桥墩地震响应的影响[J].土木工程学报, 2011, 44(1): 65-73.
HUANG Xin, LI Zhongxian. Influence of hydro- dynamic pressure on seismic response of bridge piers in deep water [J].China Civil Engineering Journal, 2011, 44(1): 65-73.
[6] 杨万理,李乔.动水压力对连续刚构桥梁地震响应的影响[J].西南交通大学学报, 2012(3):373-378.
YANG Wanli, LI Qiao. Effects of hydrodynamic pressure on seismic response of continuous rigid-framed bridge [J]. Journal of Southwest Jiaotong University, 2012(3):373-378.
[7] LI Qiao, YANG Wanli. An improved method of hydrodynamic pressure calculation for circular hollow piers in deep water under earthquake[J]. Ocean Engineering, 2013,72:241-256.
[8] JIANG Hui, WANG Baoxi, BAI Xiaoyu, et al. Simplified expression of hydrodynamic pressure on deepwater cylindrical bridge piers during earthquakes[J]. Journal of Bridge Engineering, 2017, 22(6).
[9] WANG Piguang, ZHAO Mi, DU Xiuli, et al. A finite element solution of earthquake-induced hydrodynamic forces and wave forces on mul -tiple circular cylinders[J]. Ocean Engineering, 2019,189.
[10] 程麦理,李青宁,尹俊红,等.非规则高墩曲线桥梁振动台试验研究[J].振动与冲击,2016,35 (2):24-30.
CHENG Maili, LI Qingning, YIN Junhong, et al. Shaking tables tests of irregular curved bridge with high piers [J]. Journal of Vibration and Shock,2016,35(2):24-30.
[11] LIANG Fayun, JIA Yajie, SUN Limin, et al. Seismic response of pile groups supporting long -span cable-stayed bridge subjected to multi -support excitations [J]. Soil Dynamics and Earth -quake Engineering, 2017, 101: 182-203.
[12] JIANG Lizhong, KANG Xin, LI Changqing, et al. Earthquake response of continuous girder bridge for high-speed railway: A shaking table test study [J]. Engineering Structures, 2019, 180:249-263.
[13] YI Jiang, LI Jianzhong. Experimental and numerical study on seismic response of inclined tower legs of cable-stayed bridges during earth -quakes [J]. Engineering Structures, 2019, 183: 180-194.
[14] 嵇冬冰,段昕智,徐艳,等.斜拉桥桥塔纵桥向振动台试验研究[J].石家庄铁道大学学报(自然科学版), 2013(2):1-7.
JI Dongbing,DUAN Xinzhi,XU Yan, et al. Shake table test of cable-stayed bridge pylon subjected to longitudinal ground motions[J]. Journal of Shijia -zhunag Tiedao University (Natural science), 2013(2):1-7.
[15] 邵长江,漆启明,韦旺,等. 独柱墩简支梁桥抗震性能的振动台试验研究[J].振动与冲击, 2019, 38(16): 49-55.
SHAO Changjiang,QI Qiming,WEI Wang, et al. Shaking table test of seismic performance of a simply-supported girder bridge with single colu -mn[J]. Journal of Vibration and Shock, 2019, 38(16): 49-55.
[16] 赖伟,王君杰,韦晓,等. 桥墩地震动水效应的水下振动台试验研究[J].地震工程与工程振动, 2006, 26(6): 164-171.
LAI Wei,WANG Junjie,WEI Xiao,et al. The shaking table test for submerged bridge pier [J]. Earth -quake Engineering and Engineering Vibration, 2006, 26(6):164-171.
[17] 黄信.水—桥墩动力相互作用机理及深水桥梁非线性地震响应研究[D].天津:天津大学, 2011.
[18] 孙国帅.深水桥梁下部结构体系振动台模型试验研究及理论分析[D].大连:大连理工大学, 2013.
[19] 李乔,刘浪,杨万理. 深水桥梁墩水耦合振动试验研究与数值计算[J].工程力学, 2016, 33(7): 197-203.
LI Qaio,LIU Lang,YANG Wanli. Experimental and numerical investigation on pier-water coupling vibration of bridges in deepwater[J]. Engineering Mechanics, 2016,33(7):197-203.
[20] LIU Chunguang, ZHANG Shibo, HAO Ertong. Joint earthquake, wave and current action on the pile group cable-stayed bridge tower foundation: An experimental study [J]. Applied Ocean Rese -arch, 2017, 63: 157-169.
[21] DING Yang, MA Rui, SHI Yundong, et al. Underwater shaking table tests on bridge pier under combined earthquake and wave-current action [J]. Marine Structures, 2018, 58: 301-320.
[22] LI Zhongxian, WU Kun, SHI Yundong, et al. Coordinative similitude law considering fluid -structure interaction for underwater shaking table tests [J]. Earthquake Engineering & Struc -tural Dynamics, 2018, 47(11): 2315-2332.
[23] YUN Gaojie, LIU Chunguang. Shaking table tests on a deep-water high-pier whole bridge under joint earthquake, wave and current action [J]. Applied Ocean Research, 2020, 103.
[24] 赵秋红,李晨曦, 董硕.深水桥墩地震响应研究现状与展望[J].交通运输工程学报,2019, 19(2): 1-13.
LI Qiuhong,LI Chenxi,DONG Shuo. Research status and prospect of seismic response of deep-water bridge pier [J].Journal of Traffic and Transpor -tation Engineering, 2019, 19(2):1-13.
[25] 朱彤.结构动力模型相似问题及结构动力试验技术研究[D].大连:大连理工大学, 2004.
[26] 张士博.斜拉桥结构在地震、波浪和海流作用下性能分析及优化设计[D].大连:大连理工大学, 2018.
[27] 马瑞.地震—波流联合作用下深水桥梁动力响应分析方法研究[D].天津:天津大学, 2017.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}