多维非平稳随机激励下隔震曲线梁桥的非线性振动控制

李喜梅1,2,王建成1,2,母渤海3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 67-74.

PDF(1949 KB)
PDF(1949 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 67-74.
论文

多维非平稳随机激励下隔震曲线梁桥的非线性振动控制

  • 李喜梅1,2,王建成1,2,母渤海3
作者信息 +

Nonlinear vibration control of an isolated curved girder bridge under multi-dimensional nonstationary random excitation

  • LI Ximei1,2,WANG Jiancheng1,2,MU Bohai3
Author information +
文章历史 +

摘要

隔震曲线梁桥的平面不规则性引起的弯扭耦合效应,使其地震响应与隔震直梁桥相比更加复杂,为了有效的抑制隔震曲线梁桥地震中过大的梁体及支座位移,采取半主动控制策略来保证其安全性。采用经典的Bouc-Wen模型,建立考虑上部结构偏心的隔震曲线梁桥非线性振动控制方程,将该方程等效线性化后,输入考虑扭转分量的多维非平稳随机激励。利用混合精细积分法对无控、经典最优控制(COC)以及序列最优控制(SOC)后的隔震曲线梁桥进行随机响应分析。结果表明:在罕遇非平稳随机激励下,隔震曲线梁桥的动力响应呈现出非平稳特性,且考虑扭转分量的多维非平稳随机激励对隔震曲线梁桥动力响应影响要大于未考虑扭转分量下的;运用经典最优控制以及序列最优控制控制后下的隔震曲线梁桥各个方向的的动力响应都有明显的减小,且结构动力响应的非平稳特性也得到了明显的抑制。

Abstract

The coupling effect of bending and torsion caused by plane irregularity of the isolated curved girder bridge makes its seismic response more complex than that of the isolated straight girder bridge. In order to effectively restrain the excessive displacement of beam and bearing in the isolated curved girder bridges, the semi-active control strategy is adopted to ensure its safety. Based on the classical Bouc-Wen model, the nonlinear vibration control equation of isolated curved girder bridge was established with considering the eccentricity of upper structure, and after the equation is equivalently linearized, the multi-dimensional non-stationary random excitation considering the torsion component was input. The random response analysis of the isolated curved girder bridge after uncontrolled, classical optimal control (COC) and sequential optimal control (SOC) were carried out by using the hybrid precise integration method. The results show that the dynamic response of the isolated curved girder bridges presents non-stationary characteristics under rare non-stationary random excitations, and the influence of multi-dimensional non-stationary random excitation with considering the torsion component on the dynamic response of isolated curved girder bridge is greater than that without the torsion component. The dynamic response of the isolated curved girder bridge in all directions are significantly reduced by using the classical optimal control and the sequential optimal control, and the non-stationary characteristics of the structural dynamic response are also obviously restrained.

关键词

隔震曲线梁桥 / Bouc-Wen模型 / 多维非平稳激励 / 精细积分法 / 序列最优控制

Key words

isolated curved girder bridge / the Bouc - Wen model / multi-dimensional non-stationary random excitation / precise integration method / sequential optimal control

引用本文

导出引用
李喜梅1,2,王建成1,2,母渤海3. 多维非平稳随机激励下隔震曲线梁桥的非线性振动控制[J]. 振动与冲击, 2022, 41(12): 67-74
LI Ximei1,2,WANG Jiancheng1,2,MU Bohai3. Nonlinear vibration control of an isolated curved girder bridge under multi-dimensional nonstationary random excitation[J]. Journal of Vibration and Shock, 2022, 41(12): 67-74

参考文献

[1] 陈文兵, 唐家祥. 水平任意向地震输入下双塔楼连体结构的动力分析[J]. 振动与冲击, 2003, 22(1): 29-32.
CHEN Wenbing, TANG Jiaxiang. Dynamic responses analysis of connected double-towers structure under random horizontal-orientation seismic input[J]. Journal of Vibration and Shock, 2003, 22(1): 29-32.
[2] Tian Li, Yi Siyin, Qu Bing. Orienting ground motion inputs to achieve maximum seismic displacement demands on electricity transmission towers in near-fault regions[J]. ASCE Journal of Structural Engineering, 2018, 144(4):  04018017-1-13.
[3] 张智, 李小军, 兰日清. 小半径曲线桥振动台试验模型设计与试验研究[J]. 振动与冲击, 2019, 38(4): 95-102.
ZHANG Zhi, LI Xiaojun, LAN Riqing. Design and analysis of shaking table test of a small radius curved bridge[J]. Journal of Vibration and Shock, 2019, 38(4): 95-102.
[4] Ali S, Ramaswamy A.Optimal dynamic inversion-based semi-active control of benchmark bridge using M R dampers[J].Structural Control and Health Monitoring, 2009, 16 (5) :564-585.
[5] Tan P, Agrawal A.Benchmark structural control problem for a seismically excited highw ay bridge—part II:phase I sample control designs[J].Structural Control and Health Monitoring, 2009, 16 (5) :530-548.
[6] Kawashima K. Seismic design and retrofit of bridge[C]// CD-ROM of 12th World Conference on Earthquake Engineering. Auckland, New Zealand: 12 WCEE, 2000.
[7] 蒋建军, 李建中, 范立础. 桥梁板式橡胶支座与粘滞阻尼器组合使用的减震性能研究[J]. 公路交通科技, 2005, 22 (8): 44-48.
JIANG Jianjun, LI Jianzhong, FAN Li-chu. Study on aseismic performance of combination of laminated rubber bearing and viscous damper for bridge[J]. Journal of Highway and Transportation Research and Development, 2005, 22(8): 44-48.
[8] 范立础, 王志强. 我国桥梁隔震技术的应用[J]. 振动工程学报, 1999, 12 (2): 173-181.
FAN Lichu, WANG Zhiqiang. Application of seismic isolation technology for bridges in China[J]. Journal of  Vibration Engineering, 1999, 12(2): 173-181.
[9] Ruiz Julian F D, Hayashikawa T, Obata T, et al. Seismic performance of isolated curved steel viaducts equipped with deck unseating prevention cable restrainers[J]. Journal of Constructional Steel Research, 2007 (63): 237-253.
[10] 李正英, 蒋林均, 李正良. 曲线连续梁桥不同减隔震方案对比分析[J]. 振动与冲击, 2016, 35(10): 157-161.
LI Zhengying, JIANG Linjun, LI Zhengliang. Comparative Analysis of Seismic Control Schemes for Continuous Curved Girder Bridge[J]. Journal of Vibration and Shock, 2016, 35(10): 157-161.
[11] 亓兴军, 申永刚. 三维地震动作用下曲线连续梁桥减震控制研究[J]. 振动与冲击, 2012, 31(6): 119-125.
QI Xingjun, SHEN Yonggang. Seismic mitigation control for a curved continuous girder bridge with 3-D ground motion action [J]. Journal of Vibration and Shock, 2012, 31(6): 119-125.
[12] 亓兴军, 吴玉华. 曲线连续梁桥的磁流变阻尼器减震控制[J]. 公路交通科技, 2011, 28(9): 81-88.
QI Xingjun, WU Yuhua. Seismic mitigation control for curved continuous girder bridge with magnetorheological dampers[J]. Journal of Highway and Transportation Research and Development, 2011, 28(9): 81-88.
[13] 全伟, 李宏男. 曲线桥多维多点地震激励半主动控制分析[J]. 工程力学, 2009, 26(3): 79-85.
QUAN Wei, LI Hongnan. Semi-active control of curved bridge under multi-component and multi-support earthquake[J]. Engineering Mechanics, 2009, 26(3): 79-85.
[14] Amjadian M , Agrawal A K . Semi-active Control of the Torsional Response of Horizontally Curved Bridges[C]// Us National Conference on Earthquake Engineering. 2018.
[15] 王丽, 周锡元, 闫维明. 曲线梁桥地震响应的简化分析方法[J]. 工程力学, 2006, 23(6): 77-84.
WANG Li, ZHOU Xiyuan, YAN Weiming. Simplified  analysis method for seismic response of curved bridges[J]. Engineering Mechanics, 2006, 23(6): 77-84.
[16] 李喜梅, 杜永峰, 母渤海. 多维地震激励下曲线梁桥简化模型及最不利输入方向研究[J]. 地震工程学报, 2020, 42 (02): 304-310.
LI Ximei, DU Yongfeng, MU Bohai. A simplified model of, and critical angles for curved bridges under multidimensional earthquake excitation[J]. China Earthquake Engineering Journal, 2020, 42(2):304-310.
[17]  李喜梅, 杜永峰. 水平双向地震激励下基于序列最优控制算法曲线梁桥控制分析[J]. 振动与冲击, 2015, 34(10): 6-11+33.
LI Ximei1, DU Yongfeng. The curved girder bridge control based on sequential optimal control with two-directional horizontal earthquake[J]. Journal of Vibration and Shock, 2015, 34(10): 6-11+33.
[18] 李桂青. 结构动力可靠性理论及其应用[M]. 北京: 地震出版社, 1993.
LI Guiqing. Structural dynamic reliability theory and its application[M]. Beijing: Seismological Press, 1993.
[19] 党育, 韩建平, 杜永峰. 结构动力分析的MATLAB实现[M]. 北京: 科学出版社, 2014.
DANG Yu, HAN Jianping, DU Yongfeng. MATLAB realization of structural dynamic analysis[M]. Beijing: Science Press, 2014.
[20] 马长飞. 隔震结构非平稳随机地震响应与抗倾覆易损性计算方法研究[D]. 大连: 大连理工大学, 2014.
MA Changfei. Computational methods for non-stationary stochastic seismic responses and overturning-resistant fragility of isolated structures[D]. Dalian: Dalian University of Technology, 2014.
[21] 李宏男, 霍林生. 结构多维减震控制[M]. 北京: 科学技术出版社, 2008.
LI Hongnan, HUO Linsheng. Structural multi-dimensional vibration control[M]. Beijing: Secience and Technology Publishing House, 2008.
[22] 党育. 复杂隔震结构的分析与软件实现[D]. 武汉: 武汉理工大学, 2011.
DANG Yu. Analysis and software development of complex isolated buildings[D]. Wuhan: Wuhan University of Technology, 2011.
[23] 沈金生. 非比例阻尼隔震结构反应谱方法研究及平扭耦联动力分析[D]. 兰州: 兰州理工大学, 2007.
SHEN Jinsheng. Study on the response spectrum method of non-proportional damping isolated structures and the dynamic analysis of plane-torsion coupling[D]. Lanzhou: Lanzhou University of Technology, 2007.
[24] 杜永峰. 滞变智能隔震结构的序列最优控制算法[J]. 计算力学学报, 2007, 24(1): 57-63.
DU Yongfeng. Sequential optimal control algorithm for hysteretic smart isolated structures[J]. Chinese Journal of Computational Mechanics, 2007, 24(1): 57-63.
[25] YANG J N, LI Z, LIU S C. Stable controllers for instantaneous optimal control[J]. Journal of Engineering Mechanics, ASCE, 1992, 118(8): 1612-1630.
[26] 杜永峰, 刘彦辉, 李慧. 双向偏心结构扭转耦联地震反应的序列最优控制[J]. 地震工程与工程振动, 2007(4): 133-138.
DU Yongfeng, LIU Yanhui, LI Hui. Sequential optimal control of torsional coupled seismic response for bidirectionally eccentric structure[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(4): 133-138.
[27] 马涌泉, 邱洪兴. “顶吸基隔” 结构非平稳随机地震反应分析新方法[J]. 湖南大学学报(自然科学版), 2015, 42(01): 31-39.
Ma Yongquan,  QIU Hongxing. A new method for analyzing the non-stationary random seismic responses of structure with top-absorption and base-isolation[J]. Journal of Hunan University (Natural Sciences), 2015, 42(01): 31-39.
[28] LIN J H, ZHANU W S, WILLIAMS F W. Pseudo-excitation algorithm for nonstationary random seismic responses[J]. Engineering Structures, 1994, 16(4): 270-276.
[29] 钟万勰. 结构动力方程的精细时程积分法[J]. 大连理工大学学报, 1994, 34(2): 131-136.
ZHONG Wanxie. On precise time-integration method for structural dynamics[J]. Journal of Dalian University of Technology, 1994, 34(2): 131-136.
[30] 杜永峰. 被动与智能隔震结构地震响应分析及控制算法[D]. 大连: 大连理工大学, 2003.
DU Yongfeng. Analysis of seismic response of passive and smart isolated structures and investigation to control algorithms[D]. Dalian: Dalian University of Technology, 2003.
[31] 陈国兴, 金水彬, 宰金氓. 高层建筑随机地震反应的简捷计算[J]. 南京建筑工程学院学报, 1999(01): 3-5.
CHEN Guoxing, JIN Yongbin, ZAI Jinmin. A simple method of random earthquake response analysis for high-rise buildings[J]. Journal of Nanjing Architectural and Civil Engineering Institute, 1999(01): 3-5.
[32] 薛素铎, 王雪生, 曹资. 基于新抗震规范的地震动随机模型参数研究[J]. 土木工程学报, 2003(05): 5-10.
XUE Suduo, WAND Xuesheng, CAO Zi. Parameters study on seismic random model based on the new seismic code[J]. China Civil Engineering Journal, 2003, 36(5): 5-10.
[33] 李宏男. 地面运动的转动功率谱统一数学模型[J]. 沈阳建筑工程学院学报, 1996(02): 113-117.
LI Hongnan. Unified mathematical model of the rotational power spectra of earthquake ground motions[J]. Journal of Shenyang Architectural and Civil Engineering Institute, 1996(02): 113-117.

PDF(1949 KB)

273

Accesses

0

Citation

Detail

段落导航
相关文章

/