摆式惯容-零二次刚度自复位阻尼器并联加固双柱墩抗震性能研究

张振华,张静思,王磊

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 75-83.

PDF(2494 KB)
PDF(2494 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 75-83.
论文

摆式惯容-零二次刚度自复位阻尼器并联加固双柱墩抗震性能研究

  • 张振华,张静思,王磊
作者信息 +

Seismic performance of a double-column bridge retrofitted with a self-centering damper with a zero secondary stiffness and a pendulum-based inerter in parallel

  • ZHANG Zhenhua,ZHANG Jingsi,WANG Lei
Author information +
文章历史 +

摘要

提出一种由摆式惯容(PI)和零二次刚度自复位阻尼器(ZSCD)并联组成的新型阻尼系统(IZSCD),用以加固钢筋混凝土双柱墩,以减轻自复位支撑加固对双柱墩桥基底剪力及加速度的不利影响。通过对IZSCD加固结构单自由度线性化系统的卷积积分和数值时程分析,提出并验证了含惯容系统位移反应谱。基于该反应谱,用直接基于位移设计(DDBD)方法对IZSCD加固双柱墩进行抗震设计,并用弹塑性时程分析验证了设计结果。进而研究了惯质比和杠杆放大比等对加固结构抗震性能的影响。结果表明所提出IZSCD能有效减小自复位加固双柱墩桥的加速度和基底剪力。该研究提出了一种兼顾位移、加速度和基底剪力的双柱墩自复位加固技术,并为该类加固结构的抗震设计提供指导。

Abstract

A novel damping system (IZSCD), consisting of a pendulum-based inerter (PI) and a self-centering damper with zero secondary stiffness (ZSCD) in parallel, was proposed to retrofit the double-column bridge bent, aiming to reduce the increment of base shear and acceleration of the bridge induced by the self-centering dampers (SCDs). Through the convolution integral and numerical calculation of the equivalent linearized single-degree-of-freedom system of the retrofitted structure, the displacement response spectrum of the system with inerter was developed and verified. Based on this spectrum, the seismic design of the bridge bents with IZSCD was carried out by the direct displacement-based design method, which was verified by elastic-plastic time history analysis. The effects of inertance-mass ratio and amplification factor of the lever on the seismic performance of the retrofitted bridge bents were then investigated. The results shows that IZSCD can effectively mitigate the acceleration and the base shear of the bridge bent with SCD. The research supply a method and a guideline for retrofitting the double-column bridge bent to consider the displacement, base shear and acceleration simultaneously.

关键词

双柱墩 / 自复位阻尼器 / 零二次刚度 / 摆式惯容 / 抗震性能

Key words

double-column bridge bent / self-centering damper / zero secondary stiffness / pendulum-based inerter / seismic performance

引用本文

导出引用
张振华,张静思,王磊. 摆式惯容-零二次刚度自复位阻尼器并联加固双柱墩抗震性能研究[J]. 振动与冲击, 2022, 41(12): 75-83
ZHANG Zhenhua,ZHANG Jingsi,WANG Lei. Seismic performance of a double-column bridge retrofitted with a self-centering damper with a zero secondary stiffness and a pendulum-based inerter in parallel[J]. Journal of Vibration and Shock, 2022, 41(12): 75-83

参考文献

[1] LI Jianzhong, PENG Tianbo, XU Yan. Damage investigation of girder bridges under the Wenchuan earthquake and corresponding seismic design recommendations [J].Earthquake Engineering and Engineering Vibration, 2008, 7(4):337−344.
[2] HAN Qiang, DU Xiuli, LIU Jingbo, et al. Seismic damage of highway bridges during the 2008 Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2009, 8(2):263−273.
[3] 石  岩,王东升,韩建平.设置BRB桥梁排架墩基于位移抗震设计方法[J].土木工程学报,2017, 50(7): 62−68.
SHI Yan, WANG Dongsheng, HAN Jianping. Displacement- based design method for bridge bents with buckling- restrained braces[J]. China Civil Engineering Journal, 2017,50(7):62−68.
[4] SHI Yan, ZHONG Zhengwu, QIN Hongguo, et al. Toggle buckling-restrained brace systems and a corresponding design method for the seismic retrofit of bridge bents[J]. Engineering Structures, 2020, 221(7): 110996.
[5] 孙治国,华承俊,石  岩,等. 利用BRB实现桥梁排架基于保险丝理念的抗震设计[J]. 振动与冲击,2015, 34 (22):199-205.
SUN Zhiguo, HUA Chengjun, SHI Yan, et al. Seismic design of bridge bents with BRB as a structural fuse[J]. Journal of Vibration and Shock, 2015, 34 (22):199-205.
[6] 谢  文,孙利民,魏  俊. 附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J]. 中国公路学报,2014, 27(003):59-70.
XIE Wen, SUN Limin, WEI Jun. Experimental Study on Seismic Performance of Bridge Piers with Structural Fuses and Its Application[J]. China Journal of Highway, 2014, 27(003):59-70.
[7] 李晓莉,孙治国,刘  昕, 等. 山区桥梁双柱式桥墩设置BRB的减震效果研究[J]. 振动与冲击, 2018, 37(22):178-185.
LI Xiaoli, SUN Zhiguo, LIU Xin, et al. Seismic responses of double column bridge bents with buckling-restrained braces in mountain areas[J]. Journal of Vibration and Shock, 2018, 37(22):178-185.
[8] DONG Huihui, DU Xiuli, HAN Qiang, et al. Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses of bridge structures with double column piers[J]. Engineering Structures, 2017,148: 47-62.
[9] DONG Huihui, DU Xiuli, HAN Qiang, et al. Numerical studies on the seismic performances of RC two-column bent bridges with self-centering energy dissipation brace[J]. Engineering Structures, 2020, 146(4): 04020038
[10] Upadhyay A, Pantelides C P, Ibarra L. Residual drift mitigation for bridges retrofitted with buckling restrained brace or self-centering energy dissipation devices[J]. Engineering Structures, 2019, 199(c): 109663-109663.
[11] XIANG Nailiang, Alam M S. Displacement-based seismic design of bridge bents retrofitted with various bracing devices and their seismic fragility assessment under near-fault and far-field ground motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 75-90.
[12] XUE Dong, BI Kaiming, DONG Huihui, et al. Development of a novel self-centering slip friction brace for enhancing the cyclic behaviors of RC double-column bridge bents[J]. Engineering Structures, 2021, 232.
[13] Yousef-Beik S M M, Veismoradi S, Zarnani P, et al. A new self-centering brace with zero secondary stiffness using elastic buckling[J]. Journal of Constructional Steel Research, 2020, 169: 106035.
[14] 张瑞甫,曹嫣如,潘  超. 惯容减震(振)系统及其研究进展[J]. 工程力学,2019(10) :8-27. 
ZHANG Ruifu, CAO Yanru , PAN Chao. Inerter system and its state-of-the-art[J]. Engineering Mechanics, 2019(10) :8-27.
[15] Takewaki I, Murakami S, Yoshitomi S, et al. Fundamental mechanism of earthquake response reduction in building structures with inertial dampers[J]. Structural Control and Health Monitoring, 2012, 19(6):590-608.
[16] SHI Xiang, ZHU Songye. Dynamic characteristics of stay cables with inerter dampers[J]. Journal of Sound and Vibration, 2018, 423:287-305.
[17] Ikago K, Saito K, Inoue N. Seismic control of single‐degree‐of‐freedom structure using tuned viscous mass damper [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3):453–474.
[18] ZHANG Li, XUE Songtao, ZHANG Ruifu, et al. Simplified multimode control of seismic response of high-rise chimneys using distributed tuned mass inerter systems (TMIS) [J]. Engineering Structures, 2021, 228: 111550.
[19] Lazar I F, Neild S A, Wagg D J. Using an inerter-based device for structural vibration suppression[J]. Earthquake Engineering & Structural Dynamics,
2014, 43 (8): 1129-1147.
[20] SHEN Wenai, Niyitangamahoro A, FENG Zhouquan, et al. Tuned inerter dampers for civil structures subjected to earthquake ground motions: optimum design and seismic performance[J]. Engineering Structures ,2019, 198: 109470. 
[21] Makris N, Kampas G. Seismic Protection of Structures with Supplemental Rotational Inertia[J]. Engineering Mechanics, 2016, 142(11): 04016089.
[22] 大崎顺彦. 地震动的谱分析入门:第二版 [日] [M]. 田琪译. 北京:地震出版社,2008.
Osaki Yorihiko. Shin Jishindo. No Spectre Kaiseki Nyumon. Tian Qi, Translated. Beijing: Seismo— logical Press, 2008. (in Chinese)
[23] Lubkowski Z A, DUAN Xinjian. EN1998 Eurocode 8: Design of structures for earthquake resistance[J]. Civil Engineering, 2001, 144(6):55-60.
[24] Marino E M, Nakashima M, Mosalam K M. Comparison of European and Japanese seismic design of steel building structures[J]. Engineering Structures, 2005, 27(6):827-840.
[25] Mieler M W, Stojadinovic B, Budnitz R J. Pacific Earthquake Engineering Research Center[J]. University of California Berkeley, 2013.
[26] Abrahamson N A. Non-stationary spectral matching[J]. Seismological Research Letters, 1992, 63(1): 30.
[27] Jayaram N, LIN Ting, Baker. J W.A Computationally Efficient Ground-Motion Selection Algorithm for Matching a Target Response Spectrum Mean and Variance[J]. Earthquake Spectra, 2011, 27(3):797-815.
[28] Priestley M J N, Kowalsky M J. Direct displacement -based seismic design of concrete buildings[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 2000, 33(4): 421–41.
[29] Priestley M J N, Seible F, Calvi G M. Seismic design and retrofit of bridges[M]. John Wiley & Sons, 1996.
[30] ZHANG Zhenhua, BI Kaiming, HAO Hong, et al. Development of a novel deformation amplified shape memory alloy-friction damper for mitigating seismic responses of RC frame buildings[J]. Engineering Structures, 2020, 216:110751.

PDF(2494 KB)

Accesses

Citation

Detail

段落导航
相关文章

/