自适应多尺度噪声调节二阶随机共振增强方法

李国英1,王诗彬2,杨志勃2,李继猛3,陈雪峰2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 8-15.

PDF(1535 KB)
PDF(1535 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 8-15.
论文

自适应多尺度噪声调节二阶随机共振增强方法

  • 李国英1,王诗彬2,杨志勃2,李继猛3,陈雪峰2
作者信息 +

An adaptive multiscale noise tuning second order stochastic resonance enhanced method

  • LI Guoying1,WANG Shibin2,YANG Zhibo2,LI Jimeng3,CHEN Xuefeng2
Author information +
文章历史 +

摘要

经典双稳态随机共振系统通过各种参数的调节可实现噪声、周期信号及非线性双稳态系统的最佳匹配从而实现随机共振,促使系统输出的微弱周期分量得到了一定的噪声能量而达到增强的效果,从而有效检测出微弱的周期分量,但噪声能量利用有限,系统响应中仍存在一定的噪声能量。二阶随机共振增强的系统模型,借助“双重积分”实现噪声的重复利用,将噪声进行二次利用,有效促进高频噪声能量进一步转移到低频区域,有效提高输出响应的信噪比。考虑到多尺度带限噪声对随机共振的影响,并基于随机共振特殊低通滤波器的数学本质,本文提出了以协同信噪比为目标函数,基于Paul小波的自适应多尺度噪声调节(Mutiscale noise tuning,MST)二阶随机共振增强方法,充分利用了小波的多分辨时频分析能力,将输入信号和噪声划分到不同频带,实现了不同频带信号和噪声强度大小的控制,以进一步改善随机共振检测效果。数值仿真、实验数据及工程实际应用均验证了该方法的有效性。

Abstract

The best matching between noise, periodic signal and nonlinear bistable system can be realized through tuning various parameters to achieve stochastic resonance in the classical bistable stochastic resonance system. That makes a weak periodic component in the system output got a certain amount of noise energy and achieved enhanced effect. Thus the weak periodic components can be effectively detected. However, the capability of using noise to enhance signal is limited. There are still some useful noise in the system response. Hence, aiming at the repeated utilization of the noise by virtue of double integration, a system model with second-order stochastic resonance enhanced method is proposed to reuse the noise twice and effectively promote high-frequency noise energy transferring to the low-frequency area in order to improve the signal-to-noise ratio of output response effectively. The second order stochastic resonance enhancement method based on the adaptive multiscale noise tuning of using Paul wavelet with the collaborative SNR as the objective function is proposed in the thesis taking the effect of the multiscale noise on stochastics resonance into account, and based on the mathematical nature of the special low-pass filter of stochastic resonance. This method makes full use of the ability of multi-resolution time-frequency analysis of wavelet, which can divide the input signals and noise into different frequency bands for realizing the control of intensity of signal and noise in different frequency bands, has been fully applied in the method. The property of the second order stochastic resonance, which can achieve the enhancement utilization of the noise energy in the signals, has been fully used. The proposed method has been validated by simulation tests and actual application in engineering.

关键词

随机共振 / 噪声调节 / 故障诊断 / 非线性系统

Key words

Stochastic resonance / Noise tuning / Fault diagnosis / Nonlinear systems

引用本文

导出引用
李国英1,王诗彬2,杨志勃2,李继猛3,陈雪峰2. 自适应多尺度噪声调节二阶随机共振增强方法[J]. 振动与冲击, 2022, 41(12): 8-15
LI Guoying1,WANG Shibin2,YANG Zhibo2,LI Jimeng3,CHEN Xuefeng2. An adaptive multiscale noise tuning second order stochastic resonance enhanced method[J]. Journal of Vibration and Shock, 2022, 41(12): 8-15

参考文献

[1] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. Journal of Physics A: Mathematical and General, 1981 14 (11): L453-L457.
[2] 崔伟成, 李伟, 孟凡磊等. 基于果蝇优化算法的自适应随机共振轴承故障信号检测方法[J]. 振动与冲击, 2016, 35 (10): 96-100+114.
CUI Weicheng, LI Wei, MENG Fanlei, et al. Adaptive stochastic resonance method for bearing fault detection based on fruit fly optimization algorithm[J]. Journal of Vibration and Shock, 2016, 35 (10): 96-100+114.
[3] 经哲, 郭利. 基于广义相关系数自适应随机共振的液压泵振动信号预处理方法[J]. 振动与冲击, 2016, 35 (16): 72-78+85.
JING Zhe, GUO Li. Hydraulic pump vibration signal pretreatment based on adaptive stochastic resonance with a general correlation function[J]. Journal of Vibration and Shock, 2016, 35 (16): 72-78+85.
[4] 陆思良, 苏云升, 赵吉文等. 基于二维互补随机共振的轴承故障诊断方法研究[J]. 振动与冲击, 2018, 37 (04): 7-12+27.
LU Siliang, SU Yunsheng, ZHAO JiWen, et al. Bearings fault diagnosis based on two-dimensional complementary stochastic resonance[J]. Journal of Vibration and Shock, 2018, 37 (04): 7-12+27.
[5] 张刚, 曹莉, 贺利芳等. 指数型随机共振微弱振动信号检测方法[J]. 振动与冲击, 2019, 38 (09): 53-61.
ZHANG Gang, CAO Li, HE Lifang. Weak vibration signal detection method for exponential stochastic resonance systems[J]. Journal of Vibration and Shock, 2019, 38 (09): 53-61.
[6] Ye QH, Huang HN, He XY, et al. Improved bearing estimates of weak signals using stochastic resonance and frequency shift techniques. MTS/IEEE Oceans Conference, 2003: 2410–2413.
[7] Yang DX, Hu NQ. Detection of weak aperiodic signal based on stochastic resonance. Third International Symposium on Instrument Science and Technology: Xi'an China, 2004: 0210–0213.
[8] Leng YG, Leng YS, Wang TY, et al. Numerical analysis and engineering application of large parameter stochastic resonance[J]. Journal of Sound and Vibrat ion, 2006, 292: 788-801.
[9] Leng YG, Wang TY, Guo Y, et al. Engineering signal processing based on bistable stochastic resonance[J]. Mechanical Systems and Signal Processing, 2007, (21): 138-150.
[10] Tan JY, Chen XF, Wang JY, et al. Study of frequency-shifted and re-scaling stochastic resonance and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing, 2009, 23 (3): 811-822.
[11] Li J, Zhang J, Li M, et al. A novel adaptive stochastic resonance method based on coupled bistable systems and its application in rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2019, 114: 128-145.
[12] Li J, Li M, Zhang J, et al. Frequency-shift multiscale noise tuning stochastic resonance method for fault diagnosis of generator bearing in wind turbine[J]. Measurement, 2019, 133: 421-432.
[13] 曹衍龙, 杨毕玉, 杨将新等. 基于变尺度随机共振的冲击信号自适应提取与识别方法[J]. 振动与冲击, 2016, 35 (05): 65-69.
CAO Yanlong, YANG Biyu, YANG Jiangxin, et al, Impact signal adaptive extraction and recognition based on a scale transformation stochastic resonance system [J]. Journal of Vibration and Shock, 2016, 35 (05): 65-69.
[14] 康传利, 时满星, 陈洋等. 一种考虑多尺度噪声的平滑去噪方法[J]. 科学技术与工程, 2018, 18 (11): 110-116.
Kang Chuanli, Shi Manxing, Chen Yang, et al. A smoothing de-noising method considering multi-scale noise[J]. Science Technology and Engineering, 2018, 18 (11): 110-116.
[15] 刘学, 孙翱, 李冬. 基于双树复小波的遥测振动信号多尺度噪声调节随机共振分析[J]. 振动与冲击, 2019, 38 (20): 18-24.
LIU Xue, SUN Ao, LI Dong. Multi-scale noise tuning stochastic resonance analysis of telemetry vibration signal based on double tree complex wavelet[J]. Journal of Vibration and Shock, 2019, 38 (20): 18-24.
[16] Ma Q, Huang D, Yang J. Adaptive Stochastic Resonance in Second-Order System with General Scale Transformation for Weak Feature Extraction and Its Application in Bearing Fault Diagnosis[J]. Fluctuation and Noise Letters, 2018, 17 (1).
[17] 黄大文,杨建华,唐超权,等. 二阶系统普通变尺度随机共振及轴承故障诊断[J]. 振动、测试与诊断, 2018, 38 (6): 1260-1266.
HUANG Dawen, YANG Jianhua, TANG Chaoquan, et al. General scale transformation stochastic resonance of the second-order system and bearing fault diagnosis[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38 (6): 1260-1266.
[18] Dong H, Wang H, Shen X, et al. Effects of Second-Order Matched Stochastic Resonance for Weak Signal Detection[J]. Ieee Access, 2018, 6: 46505-46515.
[19] Lu S, He Q, Kong F. Effects of underdamped step-varying second-order stochastic resonance for weak signal detection[J]. Digital Signal Processing, 2015, 36: 93-103.
[20] Tang J, Shi B. Asymmetric second-order stochastic resonance weak fault feature extraction method[J]. Measurement & Control, 2020, 53 (5-6): 788-795.
[21] Lu L, Yuan Y, Chen C, et al. A Fault Feature Extraction Method Based on Second-Order Coupled Step-Varying Stochastic Resonance for Rolling Bearings[J]. Applied Sciences-Basel, 2020, 10 (7).
[22] Zhang W, Shi P, Li M, et al. Signal Detection Based on Second-order Underdamped Tristable Stochastic Resonance and Its Application to Weak Fault Diagnosis[J]. Ieee Access, 2019, 7: 173753-173765.
[23] Lu L, Yuan Y, Wang H, et al. A New Second-Order Tristable Stochastic Resonance Method for Fault Diagnosis[J]. Symmetry-Basel, 2019, 11 (8).
[24] He C, Niu P, Yang R, et al. Incipient rolling element bearing weak fault feature extraction based on adaptive second-order stochastic resonance incorporated by mode decomposition[J]. Measurement, 2019, 145: 687-701.
[25] Chen J, Tao S, Wang W, et al. Adaptive Second-order Underdamped Stochastic Resonance Signal Enhancement Method Based on Periodic Potential Function[J]. Acta Metrologica Sinica, 2019, 40 (4): 681-685.
[26] 陈剑, 陶善勇, 王维等. 基于周期势函数的自适应二阶欠阻尼随机共振信号增强方法[J]. 计量学报, 2019, 40 (04): 681-685.
CHEN Jian, TAO Shanyong, WANG Wei, et al. Adaptive second-order underdamped stochastic resonance signal enhancement method based on periodic potential function[J]. Acta Metrologica Sinica, 2019, 40 (04): 681-685.
[27] 易甜, 张刚, 张天骐等. 二阶随机共振系统的冲击信号检测[J]. 西安交通大学学报, 2018, 52 (06): 106-113.
YI Tian, ZHANG Gang, ZHANG Tianqi, et al. A detection method of impact signals based on second-order stochastic resonance[J]. Journal of Xi'an Jiaotong University, 2018, 52 (06): 106-113.
[28] 罗毅. 自适应二阶双稳态随机共振的微弱特征增强检测方法研究[J]. 中国测试, 2017, 43 (06): 31-36.
LUO Yi, Adaptive second-order bistable stochastic resonance method and its application in weak characteristic enhance detection[J], China Measurement & Test, 2017, 43 (06): 31-36.
[29] He Q, Wang J. Effects of multiscale noise tuning on stochastic resonance for weak signal detection[J]. Digital Signal Processing, 2012, 22 (4): 614-621.
[30] Li G, Li J, Wang S, et al. Quantitative evaluation on the performance and feature enhancement of stochastic resonance for bearing fault diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 81: 108-125.
[31] De Moortel I, Munday S, Hood A. Wavelet analysis: the effect of varying basic wavelet parameters[J]. Solar Physics, 2004, 222 (2): 203-228.

PDF(1535 KB)

Accesses

Citation

Detail

段落导航
相关文章

/