多重不确定性下的电气设备地震失效风险评估

何畅1,2,王社良1,江力强2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 84-94.

PDF(1967 KB)
PDF(1967 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (12) : 84-94.
论文

多重不确定性下的电气设备地震失效风险评估

  • 何畅1,2,王社良1,江力强2
作者信息 +

Seismic failure risk assessment of electrical equipment considering different sorts of uncertainty

  • HE Chang1,2,WANG Sheliang1,JIANG Liqiang2
Author information +
文章历史 +

摘要

电气设备的地震失效风险是进行电气设备抗震设计时的关键参数。本文考虑地震动、电气设备结构、电气设备性能指标及人为认知等多重不确定性,提出了考虑多重不确定性的电气设备地震易损性及地震失效风险的评估流程。算例结果表明,多重不确定性对电气设备的地震易损性及地震失效风险有较大影响。现有条件下,电气设备数值分析模型的认知不确定性造成了较大的标准差。抗震设防烈度及抗震设防地震动加速度峰值与电气设备地震失效风险之间不呈正相关关系。在评估电气设备的地震易损性及地震失效风险时,需考虑多重不确定的影响。

Abstract

Seismic failure risk is a critical parameter in the seismic design of electrical equipment. Considering the uncertainties of earthquake ground motion, structure and limited state of the electrical equipment structures and cognition, the process to assess the seismic vulnerability and seismic failure risk of the electrical equipment was proposed in this paper. The numerical example results indicated that different sorts of uncertainties have great influence on the seismic vulnerability and failure risk of the electrical equipment. In current status, the cognitive uncertainty of the electrical-equipment numerical models introduces a large standard deviation. The seismic fortification intensity, fortification peak ground acceleration and the seismic failure risk is not positive correlation. The different sorts of uncertainty should be considered in assessing the seismic vulnerability and failure risk of the electrical equipment.

关键词

电气设备 / 地震易损性 / 地震失效风险 / 多重不确定性 / GIS套管

Key words

electrical equipment / seismic vulnerability / seismic failure risk / different sorts of uncertainty / gas insulated switchgear(GIS)bushing

引用本文

导出引用
何畅1,2,王社良1,江力强2. 多重不确定性下的电气设备地震失效风险评估[J]. 振动与冲击, 2022, 41(12): 84-94
HE Chang1,2,WANG Sheliang1,JIANG Liqiang2. Seismic failure risk assessment of electrical equipment considering different sorts of uncertainty[J]. Journal of Vibration and Shock, 2022, 41(12): 84-94

参考文献

[1] 曹永兴, 邓鹤鸣, 蔡炜, 等. 电力设备应对地震及其次生灾害的研究进展[J]. 高电压技术, 2020, 46(06): 2155-2163.
CAO Yongxing, DENG Heming, CAI Wei, et al. Research progress in prevention of earthquake and secondary disasters on power facilities [J]. High Voltage Engineering, 2020, 46(06): 2155-2163(in Chinese).
[2] Xie Q, Zhu R. Damage to electric power grid infrastructure caused by natural disasters in China-earthquake, wind and ice[J]. IEEE Power and Energy Magazine, 2011, 9(2): 28-36.
[3] 尤红兵, 赵凤新. 芦山7.0级地震及电力设施破坏原因分析[J]. 电力建设, 2013, 34(08): 100-104.
YOU Hongbing, ZHAO Fengxin. M7.0 earthquake in Lushan and damage cause analysis of power facilities[J]. Electric Power Construction, 2013, 34(08): 100-104(in Chinese).
[4] ASCE-TCLEE. Northbridge earthquake lifeline performance and post-earthquake response[R]. New York: American Society of Civil Engineering Technical Council on Lifeline Earthquake Engineering, 1997.
[5] Shinozuka M, Cheng T, Feng M Q, et al. Seismic performance analysis of electric power systems, Research Progress and Accomplishments 1997–1999[R]. New York: University at Buffalo, State University of New York, 1999.
[6] 三嶋隆樹, 横村忠幸, 高橋明男. 新潟県中越沖地震における所内変圧器火災の状況および課題解決に向けた取り組み[J]. 火災, 2008, 58(2): 5-10.
MISHIMA Takaki, YOKOMURA Tadayuki, TAKAHASHI Akio. Lessons learned from the transformer fire in the Niigata-ken Chuetsu-oki Earthquake and actions for solving the problems[J]. Fire Disaster, 2008, 58(2): 5-10(in Japanese).
[7] Johnson F, Iliev K. Earthquake effects on SDG&E’s 500/230kV Imperial Valley Substation[C]. IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012.
[8] Fujisaki E, Takhirov S, Xie Q, et al. Seismic vulnerability of power supply: Lessons learned from recent earthquakes and future horizons of research[C]. 9th International Conference on Structural Dynamics (EURODYN 2014), European Association for Structural Dynamics, Volos, Greece, 2014.
[9] Goodno B J, Gould N C, Caldwell P, et al. Effects of the January 2010 Haitian earthquake on selected electrical equipment[J]. Earthquake Spectra, 2011, 27(S1): S251–S276.
[10] Eidinger J, Davis C, Tang, A, et al. M 9.0 Tohoku Earthquake, March 11, 2011, performance of water and power systems[R]. Oakland: G&E Eigineering System Incorporated, 2012.
[11] 于金光, 郝际平, 解琦, 等. 美日中高压电气设备地震动力反应放大系数比较研究[J]. 土木工程学报, 2010, 43(S1): 77-80.
YU Jinguang, HAO Jiping, XIE Qi, et al. Comparative study on dynamic response magnification factors for high-voltage electric equipment between American Japanese and Chinese[J]. China Civil Engineering Journal, 2010, 43(S1): 77-80(in Chinese).
[12] Mohammadi R K, Akrami V, Nikfar F. Dynamic properties of substation support structures[J]. Journal of Constructional Steel Research, 2012, 78: 173-182.
[13] 何畅, 谢强, 杨振宇, 等. 特高压直流穿墙套管–阀厅体系地震响应及抗震性能提升措施[J]. 高电压技术, 2017, 43(10): 3215-3223.
HE Chang, XIE Qiang, YANG Zhenyu, et al. Seismic responses and retrofitting countermeasures for UHVDC wall bushing-valve hall system[J]. High Voltage Engineering, 2017, 43(10): 3215-3223(in Chinese).
[14] 林森, 程永峰, 孟宪政, 等. 1000kV电容式电压互感器抗震性能优化研究[J]. 振动与冲击, 2019, 38(24): 91-100.
LIN Sen, CHENG Yongfeng, MENG Xianzheng, et al. A study on the seismic performance optimization of a 1 000 kV capacitor voltage transformer[J]. Journal of Vibration and Shock, 2019, 38(24): 91-100.
[15] Li S, Tsang H H, Cheng Y, et al. Seismic testing and modeling of cylindrical electrical equipment with GFRP composite insulator[J]. Composite Structures, 2018, 194: 454-467.
[16] 孙宇晗, 程永峰, 卢智成, 等. 170kV中性点电抗器地震模拟振动台试验研究[J]. 振动与冲击, 2018, 37(12): 229-234.
SUN Yunhan, CHENG Yongfeng, LU Zhicheng, et al. Earthquake simulation shaking table tests for a 170kV neutral reactor[J]. Journal of Vibration and Shock, 2018, 37(12): 229-234.
[17] Koliou M, Filiatrault A, Reinhorn A M. Seismic response of high-voltage transformer-bushing systems incorporating flexural stiffeners I: Numerical study[J] Earthquake Spectra, 2013, 29(04): 1335-1352.
[18] Koliou M, Filiatrault A, Reinhorn A M. Seismic response of high-voltage transformer-bushing systems incorporating flexural stiffeners II: Experimental study[J] Earthquake Spectra, 2013, 29(04): 1352-1367.
[19] 谢强, 张玥, 何畅, 等. 管母连接±800 kV 复合支柱绝缘子的抗震性能分析及试验研究[J]. 高电压技术, 2020, 46(02): 626-633.
XIE Qiang, ZHANG Yue, HE Chang, et al. Experimental study and analysis on seismic performance of ±800 kV UHVDC composite post insulator interconnected by rigid bus[J]. High Voltage Engineering, 2020, 46(02): 626-633(in Chinese).
[20] 石长征, 伍鹤皋, 高晓峰, 等. 基于材料损伤的水电站厂房上部结构地震易损性分析[J]. 振动与冲击, 2021, 40(1): 264-270.
SHI Changzheng, WU Hegao, GAO Xiaofeng, et al. Seismic vulnerability analysis of hydropower house superstructure based on material damage[J]. Journal of Vibration and Shock, 2021, 40(1): 264-270.
[21] 李静, 陈健云, 徐强, 等. AP1000核岛厂房考虑重力水箱流体—结构相互作用的地震易损性分析研究[J]. 振动与冲击, 2019, 38(4): 144-150+174.
LI Jing, CHEN Jianyun, XU Qiang, et al. Seismic fragility analysis of an AP1000 shield building considering the fluid-structure interaction of a passive gravity water box[J]. Journal of Vibration and Shock, 2019, 38(4): 144-150+174.
[22] 刘如山, 刘金龙, 颜冬启, 等. 芦山7.0级地震电力设施震害调查分析[J]. 自然灾害学报, 2013, 22(05):83-90.
LIU Rushan, LIU Jinlong, YAN Dongqi, et al. Seismic damage investigation and analysis of electric power system in Lushan MS 7.0 earthquake[J]. Journal of Natural Disasters, 2013, 22(05):83-90(in Chinese).
[23] 贺海磊, 郭剑波, 谢强. 电气设备的地震灾害易损性分析[J]. 电网技术, 2011, 35(04):25-28.
HE Hailei, GUO Jianbo, XIE Qiang. Vulnerability analysis of power equipments caused by earthquake disaster[J]. Power System Technology, 2011, 35(04):25-28(in Chinese).
[24] 杨长青. 基于地震动参数高压电气设备的易损性分析[D]. 哈尔滨:中国地震局工程力学研究所, 2011.
YANG Changqing. Vulnerability analysis of high-voltage electrical equipment based on ground motion parameter[D]. Harbin: Institute of Engineering Mechanics, CEA, 2011(in Chinese).
[25] 熊明攀. 基于不同地震动参数的变电站高压电气设备易损性研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
XIONG Mingpan. Research on the vulnerability of high voltage electrical equipment based on different ground motion parameters[D]. Harbin: Institute of Engineering Mechanics, CEA, 2016(in Chinese).
[26] Zareei S A, Hosseini M, Ghafory-Ashtiany M. Seismic failure probability of a 400kV power transformer using analytical fragility curves[J]. Engineering Failure Analysis, 2016, 70: 273-289.
[27] 刘振林, 代泽兵, 卢智成. 基于Weibull分布的电瓷型电气设备地震易损性分析[J]. 电网技术, 2014, 38(4): 1076-1081.
LIU Zhenlin, DAI Zebin, LU Zhicheng. Weibull distribution based seismic vulnerability analysis of porcelain power equipment[J]. Power System Technology, 2014, 38(4): 1076-1081(in Chinese).
[28] 柏文, 唐柏赞, 戴君武, 等. 考虑地震和材料强度不确定性的瓷柱型电气设备易损性分析[J]. 中国电机工程学报, 2020: DOI: 10.13334/j.0258-8013.pcsee.200784.
BAI Wen, TANG Baizan, DAI Junwu, et al. Fragility analysis of porcelain cylindrical electrical equipment considering material strength and seismic uncertainties[J]. Proceedings of the CSEE, 2020: DOI: 10.13334/j.0258-8013.pcsee.200784(in Chinese).
[29] Dolsek M. Incremental dynamic analysis with consideration of modeling uncertainties[J]. Earthquake Engineering and Structural Dynamics, 2019, 38(6): 805-825.
[30] 边晓旭, 谢强. 基于地震动聚类的变电站设备易损性分析[J/OL]. 中国电机工程学报: 1-12[2021-03-22]. https://doi.org/10.13334/j.0258-8013.pcsee.201169.
BIAN Xiaoxu, XIE Qiang. Fragility analysis of substation equipment based on ground motion clustering[J/OL]. Proceedings of the CSEE, [2021-03-22]. https://doi.org/10.13334/j.0258-8013.pcsee.201169 (in Chinese).
[31] Cornell C A. Engineering seismic risk analysis[J]. Bulletin of the Seismological Society of America, 1968, 58(5): 1583-1606.
[32] 王晓磊, 吕大刚. 核电厂地震概率风险评估研究综述[J]. 土木工程学报, 2016, 49(11): 52-68.
WANG Xiaolei, LV Dagang. Review of seismic probability risk assessment of nuclear power plants[J]. China Civil Engineering Journal, 2016, 49(11): 52-68(in Chinese).
[33] 闫路鹏. 电网设施地震灾害风险研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2002.
YAN Lupeng. Seismic dsaster risk research of power grid facilities[D]. Harbin: Institute of Engineering Mechanics, CEA, 2002(in Chinese).
[34] 中华人民共和国住房和城乡建设部. GB 50260-2013 电力设施抗震设计规范[S]. 北京: 中国计划出版社, 2013.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB 50260-2013 Code for seismic design of electrical installations[S]. Beijing: China Planning Press, 2013(in Chinese).
[35] Applied Technology Council, Federal Emergency Management Agency. FEMA P695 Quantification of building seismic performance factors[S]. Redwood City, California: Applied Technology Council, 2009.
[36] 吕大刚, 于晓辉. 基于地震易损性解析函数的概率地震风险理论研究[J]. 建筑结构学报, 2013, 34(10): 41-48.
LV Dagang, YU Xiaohui. Theoretical study of probabilistic seismic risk assessment based on analytical functions of seismic fragility[J]. Journal of Building Structures, 2013, 34(10): 41-48(in Chinese).
[37] 中国工程建设标准化协会. CECS 160: 2004 建筑工程抗震性态设计通则[S]. 北京:中国计划出版社, 2004.
China Engineering Construction Standardization Association. CECS 160: 2004 General rule for performance-based seismic design of buildings[S]. Beijing: China Planning Press, 2004(in Chinese).
[38] Yin Y, Li Y. Seismic collapse risk of light-frame wood construction considering aleatoric and epistemic uncertainties[J]. Structural Safety, 2010, 32: 250-261.
[39] 何畅, 谢强, 杨振宇. 1100 kV 特高压气体绝缘开关套管-支架体系抗震性能加固试验研究[J]. 电网技术, 2018, 42(6): 2016-2022.
HE Chang, XIE Qiang, YANG Zhen. Tests on seismic retrofitting of 1100 kV UHV GIS bushing-supporting frame system[J]. Power System Technology, 2018, 42(6): 2016-2022(in Chinese).

PDF(1967 KB)

275

Accesses

0

Citation

Detail

段落导航
相关文章

/