齿轮-轴承传动系统擦边碰撞的动力学特性分析

高建设1,崔秉奇1,丁顺良1,杨林杰2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 1-7.

PDF(2175 KB)
PDF(2175 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 1-7.
论文

齿轮-轴承传动系统擦边碰撞的动力学特性分析

  • 高建设1,崔秉奇1,丁顺良1,杨林杰2
作者信息 +

Dynamic characteristics analysis of grazing impact of gear-bearing transmission system

  • GAO Jianshe1, CUI Bingqi1, DING Shunliang1, YANG Linjie2
Author information +
文章历史 +

摘要

齿面间的擦边碰撞是齿轮-轴承传动系统中一种特殊碰撞形式,可能会导致系统的动力学特性发生改变。为深入探究擦边碰撞对齿轮系统动力学特性的影响,基于频闪映射、齿面和齿背碰撞面Poincaré映射得到系统周期及啮合力变化规律,揭示齿轮副啮入、啮出冲击特性。并利用分岔图、啮合力变化图、相图和最大Lyapunov指数图分析擦边碰撞对系统动力学特性的影响。研究表明擦边碰撞会引起系统动力学行为发生复杂的变化,导致系统运动和冲击状态发生改变。当啮合力突变点处TLE小于零时,系统周期保持不变而啮合力发生突变,但相轨迹的拓扑结构未发生变化。当啮合力突变点处TLE近似为零时,系统运动发生分岔,系统周期数和啮合力均发生改变。该研究揭示了齿轮-轴承系统擦边碰撞引起的一些复杂动力学现象,为系统的安全运行、优化设计等方面提供参考。

Abstract

The grazing impact between tooth surfaces is a special form of impact in the gear-bearing transmission system, which may cause the dynamic characteristic of the system to change. In order to deeply explore the influence of grazing impact on the dynamic characteristics of the gear system, the system period and the change rule of meshing force were obtained by combining stroboscope mapping and Poincare mapping of tooth surface and tooth back impact surface to reveal the impact characteristics of gear pair meshing and detaching. Based on bifurcation diagram, meshing force change diagram, phase diagram, and The Largest Lyapunov Exponent diagram, the influence of grazing impact on system dynamics is analyzed. When TLE is less than zero at the mutation point of meshing force, the system period remains unchanged and the meshing force changes, but the topological structure of phase trajectory does not change. When TLE is approximately zero at the mutation point of meshing force, the system movement bifurcates, and the period number of the system and the meshing force change. Studies have shown that grazing impact can cause complex changes in the system dynamics behavior, resulting in changes in the system motion and impact state. The research reveals some complex dynamic phenomena caused by grazing impact in gear-bearing system, and provides references for the safe operation and optimal design of the system.

关键词

齿轮 / 非线性振动 / 分岔 / 擦边碰撞

Key words

Gear / Nonlinear Vibration / Bifurcation / Grazing Impact

引用本文

导出引用
高建设1,崔秉奇1,丁顺良1,杨林杰2. 齿轮-轴承传动系统擦边碰撞的动力学特性分析[J]. 振动与冲击, 2022, 41(13): 1-7
GAO Jianshe1, CUI Bingqi1, DING Shunliang1, YANG Linjie2. Dynamic characteristics analysis of grazing impact of gear-bearing transmission system[J]. Journal of Vibration and Shock, 2022, 41(13): 1-7

参考文献

[1].秦大同.国际齿轮传动研究现状[J].重庆大学学报,2014,37 (08):1-10.
Qin Datong. Review of research on international gear transmissions[J]. Journal of Chongqing University, 2014, 37(08):1-10.
[2].向玲, 高雪媛, 张力佳,等. 支承阻尼对多自由度齿轮系统非线性动力学的影响[J]. 振动与冲击, 2017(19):139 -144.
Xiang Ling, Gao Xueyuan, Zhang Lijia, et al. Effect of supporting damping on the nonlinear dynamics of multi-freedom gear systems[J]. Journal of Vibration and Shock, 2017(19): 139 -144.
[3].田亚平,褚衍东,饶晓波.双参平面内单级直齿圆柱齿轮系统动力特性综合分析[J].振动工程学报,2018,31(2): 219-225.
Tian Yaping, Chu Yandong, Rao Xiaobo. Dynamic characteristic analysis of a single-stage spur gear system in two-parameter plane[J]. Journal of Vibration Engineering, 2018,31(2): 219-225.
[4]. Shi J F, Gou X F, Zhu L Y. Calculation of time-varying backlash for an involute spur gear pair[J]. Mechanism and Machine Theory, 2020, 152:103956.
[5].林何,屈文宽,MATTHIAS R(A)TSCH,等.齿轮-轴承系统非线性振动混沌吸引子周期轨道控制[J].振动与冲击, 2020,39 (13):1-6,15.
Lin He, Qv Wenkuan, MATTHIAS R(A)TSCH, et al. Periodic orbit control of nonlinear vibration chaotic attractors of a gear-bearing system[J]. Journal of Vibration and Shock,2020, 39(13): 1-6,15.
[6].陈思雨,唐进元,谢耀东. 齿轮传动系统的非线性冲击动力学行为分析[J]. 振动与冲击, 2009,28(4):70-75.
Chen Siyu, Tang Jinyuan, Xie Yaodong. Analysis of nonlinear impact dynamic behavior for a gear pair system with time-varying stiffness and friction [J]. Journal of Vibration and Shock, 2009,28(4): 70-75.
[7].唐进元,熊兴波,陈思雨. 基于图胞映射方法的单自由度非线性齿轮系统全局特性分析[J].机械工程学报,2011,47(5): 59-65.
Tang Jinyuan, Xiong Xingbo, Chen Siyu. Analysis of Global Character of Single Degree of Freedom Nonlinear Gear System Based on Digraph Cell Mapping Method[J]. Journal of Mechanical Engineering,2011,47(5):59-65.
[8].HE S, GUNDA R, SINGH R. Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness[J]. Journal of Sound and Vibration,2007,301(3/5): 927-949.
[9].尹桩,苟向锋,朱凌云.考虑齿面冲击及摩擦的单级齿轮系统动力学建模及分析[J].振动工程学报,2018,31(06): 974-983.
Yin Zhuang, Gou Xiangfeng, Zhu Lingyun. Dynamic modeling and analysis of single-stage gear system considering tooth surface impact and friction[J]. Journal of Vibration Engineering, 2018,31(06): 974-983.
[10].Humphries N, Piiroinen P T. A discontinuity- geometry view of the relationship between saddle-node and grazing bifurcations[J]. Physica D Nonlinear Phenomena, 2012, 241(22).
[11].Mason J F, Piiroinen P T. Saddle-point solutions and grazing bifurcations in an impacting system[J]. Chaos, 2012, 22(1):462-R.
[12].申永康, 殷珊, 徐慧东,等. 碰撞振动系统不连续擦边分岔的线性反馈控制[J]. 应用力学学报, 2018, v.35;No.152(04): 12-17+249.
Shen Yongkang, Ying Shan, Xu Huidong, et al. The evolution of intragranular microcracks in a stress gradient field and an electric field[J]. Chinese Journal of Applied Mechanics, 2018, v.35;No.152(04): 12-17+249.
[13].苟向锋,吕小红,陈代林.单级齿轮传动系统的Hopf分岔与混沌研究[J].中国机械工程,2014,25(5):679-683, 691.
Gou Xiangfeng, Lv Xiaohong, Chen Dailin. Research on Hopf Bifurcation and Chaos of the Single-stage Gear Transmission System[J]. China Mechanical Engineering, 2014,25(5):679- 683,691.
[14].田亚平,褚衍东,饶晓波.双参变量下单级齿轮传动系统分岔/冲击特性分析[J].振动与冲击,2018,37(13):218- 223.
Tian Yaping, Chu Yandong, Rao Xiaobo. Bifurcation & impact characteristics of a single-stage gear train in a two-parameter plane[J]. Journal of Vibration and Shock,2018,37(13):218- 223.
[15].Marek Balcerzak, Artur Dąbrowski, Andrzej Stefański, et al. Spectrum of Lyapunov exponents in non-smooth systems evaluated using orthogonal perturbation vectors[J]. MATEC Web of Conferences,2018,148.
[16].Tugan, Eritenel, Robert G Parker. An investigation of tooth mesh nonlinearity and partial contact loss in gear pairs using a lumped-parameter model[J]. Mechanism & Machine Theory, 2012.
[17].李润方,王建军. 齿轮系统动力学:振动、冲击、噪声[M]. 科学出版社, 1997.
[18].张晨旭,杨晓东,张伟. 含间隙齿轮传动系统的非线性动力学特性的研究[J]. 动力学与控制学报, 2016,14 (002):115-121.
Zhang Chenxu, Yang Xiaodong, Zhang Wei. Study on non- linear dynamics of gear transmission system with clearance[J]. Journal of Dynamics and Control, 2016, 14(002):115-121.
[19].Mason J F, Piiroinen P T. Saddle-point solutions and grazing bifurcations in an impacting system[J]. Chaos, 2012, 22(1):462-R.
[20].Yin S, Ji J, Deng S, et al. Degenerate grazing bifurcations in a three-degree-of-freedom impact oscillator[J]. Nonlinear Dynamics, 2019, 97(2).
[21].Yin S, Wen G, Ji J, et al. Novel two-parameter dynamics of impact oscillators near degenerate grazing points[J]. International Journal of Non-Linear Mechanics, 2020, 120:103403.

PDF(2175 KB)

410

Accesses

0

Citation

Detail

段落导航
相关文章

/