地震诱发沙土液化对高速铁路车桥系统动力响应的影响分析

雷虎军,陈奕涵,朱广平

振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 195-203.

PDF(3365 KB)
PDF(3365 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 195-203.
论文

地震诱发沙土液化对高速铁路车桥系统动力响应的影响分析

  • 雷虎军,陈奕涵,朱广平
作者信息 +

Effects of earthquake induced sand liquefaction on dynamic response of high-speed railway train-bridge system

  • LEI Hujun, CHEN Yihan, ZHU Guangping
Author information +
文章历史 +

摘要

为研究地震诱发沙土液化对高速铁路车桥系统动力响应的影响,以某(88+168+88)m预应力混凝土连续刚构桥为例,采用Winkler地基梁模拟群桩基础并通过“m法”考虑桩土相互作用,同时引入液化土力学指标折减系数Ψ模拟砂土液化,建立了带有群桩基础的全桥有限元模型。在此基础上,基于TTBSAS程序系统研究了液化深度和液化程度对车桥系统动力响应的影响并分析了桥上列车的行车安全性。结果表明:桥梁横向位移随液化深度的增加会显著增大,而横向加速度的变化规律还与列车车速有关;行车安全性指标随液化深度的增加均增大,但增幅小于桥梁位移,且液化深度对桥上列车行车安全性的影响会随车速的增大逐渐减弱;液化程度对车桥系统动力响应的影响与液化深度基本一致;不考虑场地沙土液化会高估列车过桥的行车安全性,其中:对于脱轨系数指标,考虑与不考虑沙土液化时的安全车速阈值分别为275km/h和300km/h,对于轮对横向水平力指标,分别为200km/h和225km/h。本文的研究成果可为液化场地高速铁路桥梁的行车安全评价提供参考。
关键词:高速铁路;车桥系统;砂土液化;动力响应;安全车速

Abstract

To study the influence of earthquake-induced sand liquefaction on the dynamic response of high-speed railway train-bridge system (TBS), considering a (88m+168m+88m) PC continuous rigid frame bridge as an example. In the process of establishing the finite element model, the pile group foundation is simulated by Winkler foundation beam and the pile-soil interaction is considered by "m method". At the same time, the liquefied soil mechanics index reduction coefficient ψ is introduced to simulate sand liquefaction. On the basis above, and based on the TTBSAS program, the effect of liquefaction depth and liquefaction degree on the TBS is systematically studied, and the running safety of the train is analyzed. The result indicates that the bridge lateral displacement surge significantly with the increasing liquefaction depth, and the variation of bridge lateral acceleration is also related to train speed; The development of liquefaction depth lead to the general aggravation of running safety indicators, but this influence will gradually weaken with train speed rise; Compare with liquefaction depth, the influence of liquefaction degree on the TBS is basically similar; The safety of high-speed train passing by bridges will been overestimate without considering the sand liquefaction of the site. For the derailment coefficient index, the safe speed thresholds with and without considering sand liquefaction are 275km/h and 300km/h respectively, and the lateral horizontal force indexes of wheelsets are 200km/h and 225km/h, respectively. This research result could be a reference for the running safety evaluation of high-speed railway system located in liquefaction sites.
Key Words: High-speed railway; train-bridge system; sand liquefaction; dynamic responses; safety speed

关键词

高速铁路 / 车桥系统 / 砂土液化 / 动力响应 / 安全车速

Key words

High-speed railway / train-bridge system / sand liquefaction / dynamic responses / safety speed

引用本文

导出引用
雷虎军,陈奕涵,朱广平. 地震诱发沙土液化对高速铁路车桥系统动力响应的影响分析[J]. 振动与冲击, 2022, 41(13): 195-203
LEI Hujun, CHEN Yihan, ZHU Guangping. Effects of earthquake induced sand liquefaction on dynamic response of high-speed railway train-bridge system[J]. Journal of Vibration and Shock, 2022, 41(13): 195-203

参考文献

[1] 严栋, 蒋关鲁, 刘先峰, 等. 京沪高速铁路饱和粉土液化特性试验研究[J]. 岩土力学, 2008, 29(12): 3337-3341.
Yan Dong, Jiang Guan-lu, Liu Xian-feng, et al. Experimental research on liquefaction behavior of saturated silt for Beijing-Shanghai high-speed railway [J]. Rock and Soil Mechanics, 2008, 29(12): 3337-3341.
[2] 刘恢先. 唐山大地震震害[M]. 北京:地震出版社, 1989.
Liu Hui-xian. Earthquake damage of the Tangshan earthquake [M]. Beijing: Seismological Press, 1989.
[3] 翟婉明, 王少林. 桥梁结构刚度对高速列车—轨道—桥梁耦合系统动力特性的影响[J]. 中国铁道科学, 2012, 33(1): 19-26.
Zhai Wan-ming, Wang Shao-lin. Influence of bridge structure stiffness on the dynamic performance of high-speed train-track-bridge coupled system [J]. China Railway Science, 2012, 33(1):19-26.
[4] Yang Y B, Wu Y S. Dynamic stability of trains moving over bridges shaken by earthquakes [J]. Journal of Sound and Vibration, 2002, 258(1): 65-94.
[5] Xia H, Han Y, Zhang N, et al. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations [J]. Earthquake Engineering & Structural Dynamics, 2006, 35(12): 1563-1579.
[6] Xiao X B, Ling L, Jin X S. A study of the derailment mechanism of a high speed train due to an earthquake [J]. Vehicle System Dynamics, 2012, 50(3): 449-470.
[7] Jin Z B, Pei S L, Li X Z, et al. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges [J]. Journal of Sound and Vibration, 2016, 383: 277-294.
[8] 李小珍, 刘孝寒, 刘德军. 考虑桩-土相互作用的连续刚构桥车桥耦合振动分析[J]. 振动与冲击, 2011, 30(12): 54-58.
Li Xiao-zhen, Liu Xiao-han, Liu De-jun. Analysis of vehicle-bridge coupled vibration of continuous rigid frame bridge considering pile-soil interaction [J]. Journal of Vibration and Shock, 2011, 30(12): 54-58.
[9] 陈令坤, 蒋丽忠, 陶磊, 等. 考虑桩-土作用的高速列车-桥梁地震响应分析[J]. 岩土力学, 2012, 33(10): 3162-3170.
Chen Ling-kun, Jiang Li-zhong, Tao Lei, et al. High-speed train-bridge seismic response analysis considering pile-soil interaction [J]. Rock and Soil Mechanics, 2012, 33(10): 3162-3170.
[10] 乔宏, 夏禾, 杜宪亭. 考虑桩土相互作用的车桥耦合动力分析[J]. 振动与冲击, 2018, 37(3): 105-111.
Qiao Hong, Xia He, Du Xian-ting. Dynamic analysis of vehicle-bridge coupling considering pile-soil interaction [J]. Journal of Vibration and Shock, 2018, 37(3): 105-111.
[11] 雷虎军, 黄江泽. 考虑桩土相互作用下的车-轨-桥系统地震响应分析[J]. 西南交通大学学报, 2021, 56(2): 1-9.
Lei Hu-jun, Huang Jiang-ze. Seismic responses analysis of train-track-bridge system considering pile-soil interaction [J]. Journal of Southwest Jiaotong University, 2021, 56(2): 1-9.
[12] Makris N, Gazetas G. Dynamic pile‐soil‐pile interaction. Part II: Lateral and seismic response [J]. Earthquake Engineering & Structural Dynamics, 2010, 21(2): 145-162.
[13] Kuecueukarslan S, Banerjee P K, Bildik N. Inelastic analysis of pile soil structure interaction [J]. Engineering Structures, 2003, 25(9):1231-1239.
[14] Mylonakis G, Nikolaou A, Gazetas G. Soil-pile-bridge seismic interaction: Kinematic and inertial effects. 1. Soft soil [J]. Earthquake Engineering & Structural Dynamics, 1997, 26(3):337-359.
[15] 翟婉明. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社, 2011.
Zhai Wan-ming. Train-track-bridge dynamic interaction theory and engineering application [M]. Beijing: Science Press, 2011.
[16] Reese L C. Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth [J]. Proc.8th Texas Conf. S. M. F. E., The Univ. of Texas, 1956.
[17] 朱金龙, 孙力彤. 软土地基上桩基础使用m法计算的验证[J]. 同济大学学报(自然科学版), 2003, (8): 902-905.
Zhu Jin-long, Sun Li-tong. Verification of pile foundation calculation using m method on soft soil foundation [J]. Journal of Tongji University (Natural Science Edition), 2003, (8):902-905.
[18] Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep-force models for rail vehicle dynamic analysis [C]. 8th IAVSD Symp, Cambridge, Ma. 1984, 591-605.
[19] 雷虎军. 非一致地震激励下列车—轨道—桥梁耦合振动及行车安全性研究[D]. 西南交通大学, 2014.
Lei Hu-jun. Non-uniform seismic excitation of the following vehicle-track-bridge coupled vibration and driving safety research [D]. Southwest Jiaotong University, 2014.
[20] Li X Z, Zhang Z J, Zhang X. Using elastic bridge bearings to reduce train-induced ground vibrations: An experimental and numerical study [J]. Soil Dynamics & Earthquake Engineering, 2016, 85: 78-90
[21] 雷虎军, 黄炳坤, 刘伟. 基于几何指标的高速铁路桥上列车地震安全性评判方法[J]. 振动与冲击, 2020, 39(17): 57-63.
Lei Hu-jun, Huang Bing-kun, Liu Wei. Evaluation method for running safety of train on a high-speed railway bridge based on geometric indexes [J]. Journal of Vibration and Shock, 2020, 39(17): 57-63.

PDF(3365 KB)

271

Accesses

0

Citation

Detail

段落导航
相关文章

/