为了限制隔振系统在受到冲击载荷时位移超过允许范围,通常在隔振系统中安装限位器。以带限位双层隔离系统为研究对象,提出坐标平移的方法,以不同刚度段的虚拟平衡点为原点建立新的坐标系,分段建立线性方程。采用模态叠加法对冲击方程进行解析求解,进而利用MATLAB仿真来计算冲击响应,设计了带限位器的试验装置与仿真结果进行对比。研究结果表明:通过坐标平移法建立的线性方程具有标准形式,可以通过模态叠加法直接进行求解;仿真计算结果与试验结果具有较高的一致性,证明了所建立的模型的正确性。
关键词:限位器;分段线性;冲击响应;双层隔离系统;模态叠加
Abstract
In order to limit the displacement of the vibration isolation system to exceed the allowable range when subjected to a shock load, displacement restrictors are usually installed in the vibration isolation system. Taking the double-deck vibration isolation system with displacement restrictors as the research object, the method of coordinate translation is proposed. A new coordinate system is established with the virtual equilibrium points of different stiffness sections as the origin, and the linear equation is established in sections. The modal superposition method is used to analyze the shock equation, and then MATLAB simulation is used to analyze the influence of the displacement restrictor parameters on the shock response of the double-deck vibration isolation system, and compare it with the single-deck system. The research results show that the linear equation established by the coordinate translation method has a standard form and can be solved directly by the modal superposition method; the influence law of the displacement restrictor parameters on the shock response of the double-deck vibration isolation system is obtained to provide a reference for the design of the displacement restrictor.
Key words: displacement restrictor; piecewise linear; shock response; double-deck vibration isolation system; mode superposition method
关键词
限位器 /
分段线性 /
冲击响应 /
双层隔离系统 /
模态叠加
{{custom_keyword}} /
Key words
displacement restrictor /
piecewise linear /
shock response /
double-deck vibration isolation system /
mode superposition method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪玉,华宏星. 舰船现代冲击理论及应用[M]. 北京:科学出版社, 2005.
WANG Yu, HUA Hongxing. Modern ship anti-shock theory and application[M]. Beijing: Science Press, 2005.
[2] 李鹏超, 李明. 冲击激励下含限位器的气囊-船用旋转机械系统的动力学特性分析[J]. 振动与冲击, 2020, 39(5): 183-187+193.
LI Pengchao, LI Ming. Dynamic characteristics of an airbag-marine rotating machinery system with displacement restrictor under shock excitation[J]. Journal of Vibration and Shock, 2020, 39(5): 183-187+193.
[3] 张春辉, 汪玉, 吴一红等. 双限位器隔离系统的冲击响应计算及参数影响分析[J]. 振动与冲击, 2015, 34(9):125-130.
ZHANG Chunhui, WANG Yu, WU Yihong, et al. Shock response calculation and effects of structural parameter on shock isolation system with double displacement restrictors[J]. Journal of Vibration and Shock, 2015, 34(9): 125-130.
[4] Moussi E H, Bellizzi S, Cochelin B, et al. Nonlinear normal modes of a two degrees-of-freedom piecewise linear system[J]. Mechanical Systems and Signal Processing, 2015(64-65): 266-281.
[5] Narimani A, Golnaraghi M E, Jazar G N. Frequency Response of a Piecewise Linear Vibration Isolator[J]. Journal of Vibration and Control. 2004, 10(12): 1775-1794.
[6] WANG Sheng, HUA Lin, YANG Can, et al. Applications of incremental harmonic balance method combined with equivalent piecewise linearization on vibrations of nonlinear stiffness systems[J]. Journal of Sound and Vibration, 2019(441): 111-125.
[7] 何冬东, 高强, 钟万勰. 求解周期性分段线性系统动态响应的高效数值方法[J]. 应用数学和力学, 2018, 39(7): 737-749.
HE Dongdong, GAO Qiang, ZHONG Wanxie. An efficient numerical method for computing dynamic responses of periodic piecewise linear systems[J]. Applied Mathematics and Mechanics, 2018, 39(7): 737-749.
[8] Yu S D. An efficient computational method for vibration analysis of unsymmetric piecewise-linear dynamical systems with multiple degrees of freedom[J]. Nonlinear Dynamics, 2013, 71(3): 493-504.
[9] 刘海超,闫明,冯麟涵.带限位隔振系统的冲击响应分析[J].振动与冲击, 2019, 38(21): 172-177.
LIU Haichao, YAN Ming, FENG Linhan. Shock response of a vibration isolation system with displacement restrictors[J]. Journal of Vibration and Shock, 2019, 38(21): 172-177.
[10] Galhoud L E, Masri S F, Anderson J C. Transfer function of a class of nonlinear multidegree of freedom oscillators[J]. Journal of Applied Mechanics, 1987, 54(1): 215–225.
[11] Dubowsky S, Freudenstein F. Dynamic analysis of mechanical systems with clearances-part1: formation of dynamic model[J]. Journal of Engineering for Industry, 1971, 93(1):305-309.
[12] Gao X, Chen Q. Theoretical analysis and numerical simulation of resonances and stability of a piecewise linear-nonlinear vibration isolation system[J]. Shock and Vibration, 2014(2014): 1-12.
[13] TAO Hongcheng, Gibert J. Periodic orbits of a conservative 2-DOF vibro-impact system by piecewise continuation: bifurcations and fractals[J]. Nonlinear Dynamics, 2019,(95): 2963-2993.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}