外置纵向排水管对扁平钢箱梁涡振性能的影响及气动控制措施研究

黄林1,2,董佳慧1,2,王骑1,2,乔雷涛3,廖海黎1,2,王涛1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 43-51.

PDF(3735 KB)
PDF(3735 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 43-51.
论文

外置纵向排水管对扁平钢箱梁涡振性能的影响及气动控制措施研究

  • 黄林1,2,董佳慧1,2,王骑1,2,乔雷涛3,廖海黎1,2,王涛1,2
作者信息 +

Effects of external longitudinal drainage pipe on VIV performance of flat steel box girder and aerodynamic control measure

  • HUANG Lin1,2, DONG Jiahui1,2, WANG Qi1,2, QIAO Leitao3, LIAO Haili1,2, WANG Tao1,2
Author information +
文章历史 +

摘要

为研究外置纵向排水管对扁平箱梁涡振性能的影响,以某大跨度扁平钢箱梁悬索桥为工程背景,采用1:50节段模型风洞试验,分别对有无外置纵向排水管的扁平箱梁涡振性能进行研究。试验结果表明:原设计扁平箱梁在0°与±3°风攻角下均发生显著涡激振动,通过在检修车轨道处设置内侧导流以及将外侧防撞栏杆隔二封一可以有效抑制断面涡振振幅至规范限值以下,但沿桥纵向设置外置排水管会显著降低主梁涡振性能,并使原有效涡振制振措施失效。通过CFD对主梁断面二维流场的模拟结果表明,外置纵向排水管会同时改变扁平箱梁断面下表面迎风侧与背风侧斜腹板处的旋涡脱落形态,在此基础上,通过在外置纵向排水管处增设导流板与水平稳定板用以改善该处的气体绕流形态,并据此提出了一种水平稳定板、导流板与间隔封闭栏杆共同作用的组合气动措施。试验结果表明,该组合措施能够显著抑制主梁的涡激振动,同时数值模拟结果表明,能够显著减弱斜腹板处的旋涡脱落现象,从而降低主梁受到的周期性涡激力,是该组合气动措施能够抑制梁体涡激振动的主要原因。
关键词:扁平钢箱梁;涡激振动;外置纵向排水管;气动措施;风洞试验;CFD

Abstract

In order to investigate the influence of the external drainage pipe along the bridge on the vortex-induced vibration (VIV) of the flat steel box girder, a long-span suspension bridge with flat steel-box girder was taken as an engineering example. The VIV performance of the girder with or without the drainage pipe was studied by using 1:50 scale section model wind tunnel test. The tests show that significant VIV occurs in the original box girder at both 0° and ±3° wind attack angles. The VIV amplitude of the section can be effectively suppressed below the standard limit by setting the inner baffle at the track of the maintenance vehicle and change the railing ventilation rate. However, setting the drainage pipe along the longitudinal direction of the bridge will significantly reduce the VIV performance of the girder and make the original effective aerodynamic countermeasures ineffective. The two-dimensional flow field around the cross section of the girder was modeled by CFD. The calculation results show that the installation of a longitudinal drainage pipe will simultaneously change the vortex shedding pattern at the windward and leeward inclined web of the lower surface of the flat box girder section. On this basis, by adding baffles and the horizontal stabilizer at the drainage pipe, a combined aerodynamic measure formed by the combination of the horizontal stabilizer, the baffle and closed barriers is proposed. The test results show that this measure can effectively suppress VIV of the girder, and the VIV suppression mechanism of the combined aerodynamic measure is studied by using computational fluid dynamics. The calculation results show that the measure can significantly reduce the cross-sectional vortex shedding size, and significantly reduce the periodic aerodynamic force on the girder, thereby suppressing the VIV of the girder.
Key Words:flat steel box girder; vortex-induced vibration; external longitudinal drainage pipe; aerodynamic countermeasure; wind tunnel test; CFD

关键词

扁平钢箱梁 / 涡激振动 / 外置纵向排水管 / 气动措施 / 风洞试验 / CFD

Key words

flat steel box girder / vortex-induced vibration / external longitudinal drainage pipe / aerodynamic countermeasure / wind tunnel test / CFD

引用本文

导出引用
黄林1,2,董佳慧1,2,王骑1,2,乔雷涛3,廖海黎1,2,王涛1,2. 外置纵向排水管对扁平钢箱梁涡振性能的影响及气动控制措施研究[J]. 振动与冲击, 2022, 41(13): 43-51
HUANG Lin1,2, DONG Jiahui1,2, WANG Qi1,2, QIAO Leitao3, LIAO Haili1,2, WANG Tao1,2. Effects of external longitudinal drainage pipe on VIV performance of flat steel box girder and aerodynamic control measure[J]. Journal of Vibration and Shock, 2022, 41(13): 43-51

参考文献

[1] 陈政清. 桥梁风工程[M]. 北京:人民交通出版社,2005.
CHEN Zheng-qing. Bridge wind engineering [M]. Beijing: China Communications Press, 2005.
[2] 杨阳,张亮亮,吴波,等. 宽体扁平钢箱梁气动力特性及涡振性能研究[J]. 桥梁建设,2016,46(01):70-75.
YANG Yang, ZHANG Liang-liang, WU Bo, et al. Study of aerodynamic characteristics and vortex-induced vibration performance of wide flat steel box girder[J]. Bridge Construction, 2016, 46(01): 70-75.
[3] 张亮亮,吴波,杨阳,等. 附属构件及桥面粗糙度对近流线型宽体箱梁气动静力系数的影响[J]. 实验流体力学,2016,30(01):74-80.
ZHANG Liang-liang, WU Bo, YANG Yang, et al. Effects of subsidiary members and deck surface roughness on the aerodynamic coefficients of static forces on a flat box girder[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(01): 74-80.
[4] 李春光,陈政清,韩阳. 带悬挑人行道板流线型箱梁涡振性能研究[J]. 振动与冲击,2014,33(24):19-25.
LI Chun-guang, CHEN Zheng-qing, HAN Yang. Vortex induced vibration performance of a streamlined box girder with a cantilevered walking slab[J]. Journal of Vibration and Shock, 2014, 33(24): 19-25.
[5] 刘君,廖海黎,万嘉伟,等. 检修车轨道导流板对流线型箱梁涡振的影响[J]. 西南交通大学学报,2015,50(05):789-795.
LIU Jun, LIAO Hai-li, WAN Jia-wei, et al. Effect of guide vane beside maintenance rail on vortex-induced vibration of streamlined box girder[J]. Journal of Southwest Jiaotong University, 2015, 50(05): 789-795.
[6] Larsen, A,Wall, A. (2012). Shaping of bridge box girders to avoid vortex shedding response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 159–165.
[7] Larsen A, Esdahl S, Andersen J. E. Storebælt suspension bridge vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2), 283–296.
[8] Nagao F, Utsunomiya H, Yoshioka E, et al. Effects of handrails on separated shear flow and vortex-induced oscillation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 934-944.
[9] 李浩弘,吴波,张亮亮,等. 基于风洞试验及大涡模拟的宽体扁平箱梁涡振特性研究与优化[J]. 建筑结构学报,2018,39(S1):29-35.
LI Hong-hao, WU Bo, ZHANG Liang-liang, et al. Investigation and optimization on viv performances of wide flat box girders based on wind tunnel tests and large eddy simulations[J]. Journal of Building Structures, 2018, 39(S1): 29-35.
[10] 朱思宇,李永乐,申俊昕,等. 大攻角来流作用下扁平钢箱梁涡振性能风洞试验优化研究[J]. 土木工程学报,2015,48(02):79-86.
ZHU Si-yu, LI Yong-le, SHEN Jun-xin, et al. Optimization of vortex-induced vibration of flat steel box girders at large attack angle by wind tunnel test[J]. China Civil Engineering Journal, 2015, 48(02): 79-86.
[11] Wang Qi, Liao Hai-Li. Influence of aerodynamic configuration of a streamline box girder on bridge flutter and vortex-induced vibration[J]. Journal of Modern Transportation, 2011, 19, 261–267.
[12] 孙延国,廖海黎,李明水. 基于节段模型试验的悬索桥涡振抑振措施[J]. 西南交通大学学报,2012,47(02):218-223+264.
SUN Yan-guo, LIAO Hai-li, LI Ming-shui. Mitigation measures of vortex-induced vibration of suspension bridge based on section model test[J]. Journal of Southwest Jiaotong University, 2012, 47(02): 218-223+264.
[13] LI Ming, SUN Yan-guo, JING Hong-miao, et al. Vortex-induced vibration optimization of a wide streamline box girder by wind tunnel test[J]. KSCE Journal of Civil Engineering, 2018, 22 (12): 5143–53.
[14] 李明,孙延国,李明水,等. 宽幅流线型箱梁涡振性能及制振措施研究[J]. 西南交通大学学报,2018,53(04):712-719.
LI Ming, SUN Yan-guo, LI Ming-shui, et al. Vortex-induced vibration performance of wide streamlined box girder and aerodynamic countermeasure research[J]. Journal of Southwest Jiaotong University, 2018, 53(04): 712-719.
[15] ZHAN Jian, XIN Dabo, OU Jinping, et al. Experimental study on suppressing vortex-induced vibration of a long-span bridge by installing the wavy railings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202: 104205.
[16] 胡传新, 赵林, 周志勇, 等. 流线型闭口箱梁抑流板抑制涡振机理研究[J]. 振动工程学报, 2020, 33(01): 1-11.
HU Chuan-xin, ZHAO Lin, ZHOU Zhi-yong, et al. Mechanism of vortex vibration suppression by flow suppression plate of streamlined closed box girder[J]. Journal of Vibration Engineering, 2020, 33(01): 1-11.
[17] HU Chuan-xin, ZHAO Lin, GE Yao-jun. Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 189: 314-331
[18] JTG D60-2015. 公路桥涵设计通用规范[S]. 北京:人民交通出版社,2015.
JTG D60-2015. General code for design of highway bridges and culverts[S]. Beijing: China Communications Press, 2015.
[19] 于晓磊,殷桂芳. 基于环保理念的溧河洼特大桥桥面排水设计[J]. 现代交通技术,2020,17(01):40-44.
YU Xiao-lei, YIN Gui-fang. Lihewa bridge deck drainage design based on environmental protection design concept[J]. Modern Transportation Technology, 2020, 17(01): 40-44.
[20] JTG/T 3360-01-2018. 公路桥梁抗风设计规范[S]. 北京:人民交通出版社,2018.
JTG/T 3360-01-2018. Wind-resistant design specification for highway bridges[S]. Beijing: China Communications Press, 2018.
[21] 张建,郑史雄,唐煜,等. 基于节段模型试验的悬索桥涡振性能优化研究[J]. 实验流体力学,2015,29(02):48-54.
ZHANG Jian, ZHENG Shi-xiong, TANG Yu, et al. Research on optimizing vortex-induced vibration performance for suspension bridge based on section model test[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(02): 48-54.
[22] 李春光,张记,樊永波,等. 宽幅流线型钢箱梁涡振性能气动优化措施研究[J]. 桥梁建设,2017,47(01):35-40.
LI Chun-guang, ZHANG Ji, FAN Yong-bo, et al. Study of aerodynamic optimization measures for vortex-induced vibration performance of wide streamlined steel box girder[J]. Bridge Construction, 2017, 47(01): 35-40.
[23] Furumai H, Balmer H, Boller M. Dynamic behavior of suspended pollutants and particle size distribution in highway runoff[J]. Water Science Technol, 2002, 46(11/12): 413-418.
[24] Defraeye T, Blocken B, Koninckx E, et al. Aerodynamic study of different cyclist positions cfd analysis and full-scale wind-tunnel tests[J]. Journal of Biomechanics, 2010, 43(7): 1262-1268.
[25] Menter F R. Two-equation eddy-viscosity models for engineering applications[J]. AIAA Journal, 1994, 8(32): 1598-160.
[26] 黄林,董佳慧,王骑,等. 检修车轨道位置与导流板对宽体扁平钢箱梁涡振性能影响研究[J]. 西南交通大学学报,1-10 [2021-12-27].
HUANG Lin, DONG Jiahui, WANG Qi, et al. Study on the influence of maintenance rail position and guide vane on vortex-induced vibration performance of wide flat steel box girder[J]. Journal of Southwest Jiaotong University, 1-10 [2021-12-27].

PDF(3735 KB)

Accesses

Citation

Detail

段落导航
相关文章

/