一类分数阶分段Duffing振子的混沌研究

王军1,申永军1,张建超1,王晓娜2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 8-16.

PDF(1982 KB)
PDF(1982 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (13) : 8-16.
论文

 一类分数阶分段Duffing振子的混沌研究

  • 王军1,申永军1,张建超1,王晓娜2
作者信息 +

Chaos of a class of piecewise Duffing oscillator with fractional-order derivative term

  • WANG Jun1, SHEN Yongjun1, ZHANG Jianchao1, WANG Xiaona2
Author information +
文章历史 +

摘要

研究了谐波激励下含有分数阶微分项的分段Duffing振子的混沌运动,分数阶微分项采用Caputo定义进行计算,并利用等效刚度和等效阻尼的概念对其进行处理。运用Melnikov方法,建立了Smale马蹄意义下混沌运动的必要条件,得到了系统发生混沌运动的临界条件,并进行了解析解和数值解的比较,结果证明了解析必要条件的正确性,最后通过数值模拟,研究了系统线性刚度系数、阻尼系数、分数阶阶次、分数阶系数以及分段Duffing刚度系数对系统混沌运动的影响。
关键词:Melnikov方法;分数阶微分;分段Duffing 振子;混沌

Abstract

This paper presents an investigation of the chaos in a piecewise Duffing oscillator with fractional-order derivative under harmonic excitation. The Caputo definition is used to calculate the fractional-order derivative, and the concepts of equivalent stiffness and equivalent damping are used to process the fractional-order derivative. Based on the Melnikov method, the analytically necessary condition for the chaos in the sense of Smale horseshoes is established and then the chaotic critical condition curve is obtained. The comparison between the analytical solution and the numerical solution is investigated, and the results verify the correctness of the analytically necessary condition. Finally, the influence of linear stiffness coefficient, damping coefficient, fractional-order order, fractional-order coefficient and piecewise Duffing stiffness coefficient on the necessary conditions for chaos are studied by numerical simulation.
Key words:Melnikov method; fractional-order derivative; piecewise Duffing oscillator; chaos

关键词

Melnikov方法 / 分数阶微分 / 分段Duffing 振子 / 混沌

Key words

Melnikov method / fractional-order derivative / piecewise Duffing oscillator / chaos

引用本文

导出引用
王军1,申永军1,张建超1,王晓娜2.  一类分数阶分段Duffing振子的混沌研究[J]. 振动与冲击, 2022, 41(13): 8-16
WANG Jun1, SHEN Yongjun1, ZHANG Jianchao1, WANG Xiaona2. Chaos of a class of piecewise Duffing oscillator with fractional-order derivative term[J]. Journal of Vibration and Shock, 2022, 41(13): 8-16

参考文献

[1]牛玉俊,乔俊峰,胡双年.定点脉冲信号作用下Duffing-Rayleigh系统的混沌预测[J].合肥工业大学学报(自然科学), 2020, 43(12): 1718-1722.
Niu Yu-jun,Qiao Jun-feng, Hu Shuang-nian. Chao sprediction of Duffing-Rayleigh system excited by fixed impulsive signals[J].
Journal of Hefei University of Technology(Natural Science),
2020,43(12):1718-1722.
[2]李海涛,丁虎,陈立群,秦卫阳.三稳态能量收集系统的同宿分岔及混沌动力学分析[J].应用数学和力, 2020,41(12):1311-1322.
   Li Hai-tao, Ding Hu, Chen Li-qun, Qin Wei-yang. Homoclinic Bifurcations and Chaos Thresholds of Tristable Piezoelectric Vibration Energy Harvesting Systems[J]. Appled Mathematics
and Mechanics, 2020,41(12):1311-1322.
[3]沈晓娜,冯进钤,任一凡.非对称结构形状记忆合金梁模型的混沌运动[J].纺织高校基础科学学报,2020,33(03):99-105.
Shen Xiao-na, Feng Jin-qian, Ren Yi-fan. Chaotic motion of shape memory alloy beam model with asymmetric structure[J]. Basic Sciences Journal of Textile Universities, 2020, 33(03):99-
105.
[4]李海涛,丁虎,陈立群.带有非对称势能阱特性的双稳态能量采集系统混沌动力学分析[J].振动与冲击,2020,39(18):54-59+69.
Li Hai-tao, Ding Hu, Chen Li-qun. Chaotic dynamics of a bi-stable energy harvesting system with asymmetric potential well characteristics.Journal of Vibration and Shock, 2020, 39
(18):54-59+69.
[5]张红丽,陈芳启.一类带有外激的非线性动力系统的混沌运动[J].科学技术与工程,2016,16(13):1-6.
Zhang Hong-li,Chen Fang-qi. Chaos in a Nonlinear Dynamical System under External Excitation[J].Science Technology and Engineering,2016,16(13):1-6.
[6]Wang Zhen and Hu Wei-peng. Resonance analysis of a single-walled carbon nanotube[J]. Chaos, Solitons & Fractals, 2020 : 110498.
[7]刘彬,李鹏,刘飞,刘浩然,姜甲浩.液压缸非线性刚度约束系统的混沌预测及控制[J].中国机械工程,2017,28(5):559-564+582.Liu Bin, Li Peng, Liu Fei, Liu Hao-ran, Jiang Jia-hao.
Chaotic Prediction and Control of Hydraulic Cylinder Nonli-near Stiffness Constraint System[J]. China Mechanical Engi-neering,2017,28(05):559-564+582.
[8]李航,申永军,杨绍普,彭孟菲,韩彦军.Duffing系统的主-超谐联合共振[J].物理学报,2021,70(04):119-128.
Li Hang, Shen Yong-Jun, Yang Shao-Pu, Peng Meng-Fei, Han Yan-Jun. Simultaneous primary and super-harmonic resonance of Duffing oscill-ator. Acta Physica Sinica, 2021,70(4): 119-128.
[9] Wen Shao-Fang, et al. Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback[J]. Shock
and Vibration, 2018, 2018
[10]Sun Zhong-kui, et al. Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback[J]. Chaos, Solitons and Fractals, 2005, 27(3): 705-714.
[11]Shen Yong-Jun, et al. Analytical threshold for chaos in a Duffing oscillator with delayed feedbacks[J]. International Journal of Non-Linear Mechanics, 2018, 98: 173-179.
[12]Xing Wu-ce, et al. Threshold for Chaos of a Duffing Oscillator with Fractional-Order Derivative[J]. Shock and Vibration, 2019, 2019
[13]P.R. Nwagoum Tuwa, et al. Chaotic vibrations of nonlinear viscoelastic plate with fractional derivative model and subjected to parametric and external excitations[J]. Mechanics Research Communications, 2019, 97: 8-15.
[14] Tabejieu A, L. M ,Nbendjo N, et al. On the dynamics of Rayleigh beams resting on fractional-order viscoelastic Pasternak foundations subjected to moving loads[J]. CHAOS SOLITONS AND FRACTALS, 2016.
[15] Liu Di and Xu Yong and Li Jun-lin. Randomly-disordered-periodic-induced chaos in a piezoelectric vibration energyharvester system with fractional-order physical properties[J].Journal of Sound and Vibration, 2017, 399: 182-196.
[16] Chang Yu-jian, Chen En-li, Xing Wu-ce, et al. Threshold for horseshoe chaos in fractional-order hysteretic nonlinear suspension system of vehicle[J]. AIP Advances, 2020, 10(3):035318.

PDF(1982 KB)

349

Accesses

0

Citation

Detail

段落导航
相关文章

/