某科学装置包括重载机、高速机和模型机三台巨型离心机,主机基础位于软土基坑内,其中高速机转速达668r/min,重载机最大容量1900 g•t,基础结构的振动问题不容忽视。为了对多个主机基础间的振动相互影响进行研究,基于有限元软件建立了离心机基础结构+地基的三维耦合模型,采用动力时程方法计算分析了各主机运行工况下的振动响应;并基于多个分缝优化方案,研究了分缝隔振的效能。结果表明:(1)模型机运行时其自身基础的振动位移幅值最大;(2)重载机运行时对相邻机组振动的影响最为显著,对相邻基础的振动传递比例分别达到63%和72%;(3)对相邻机组振动影响呈现随与振源距离增大而衰减的趋势;(4)在地连墙包围的条件下,三基础间的分缝隔振效能不突出,从振动响应对比看,三台机组间不分缝是相对较优的方案。
关键词:主机基础;离心机;振动响应;分缝隔振;设计优化
Abstract
A large-scale equipment mainly includes three giant centrifuges, namely a heavy-duty machine, a high-speed machine, and a model machine. The equipment foundation is located in a soft soil foundation pit. The vibration problem of the basic structure cannot be ignored as the rotating speed of the high-speed machine is 668r/min, and the maximum capacity of the heavy-duty machine is 1900g•t. In order to study the vibration interaction between multiple foundations, a three-dimensional coupling model of centrifuge foundation + basic structure is established based on finite element software, and the dynamic time history method is used to calculate and analyze the vibration response of each mainframe under operating conditions; And then the effectiveness of split joint vibration isolation is studied based on multiple split joint optimization schemes. The results show that: (1) The vibration displacement amplitude of its own foundation is the largest when the model machine is running. (2) The heavy-duty machine has the most significant impact on the vibration of adjacent units when it is running, and the vibration transmission ratio to the adjacent foundation reaches 63% for the high-speed machine and 72% for the model machine. (3) The vibration impact on adjacent units will attenuate as the distance from the vibration source increases. (4) Under the condition that the ground connecting wall is surrounded, the vibration isolation efficiency of the joints between the three foundations is not outstanding. From the comparison of the vibration response, no joints between the three units are a relatively better solution.
Key words: foundation; centrifuge; vibration response; joint isolation; design optimization
关键词
主机基础 /
离心机 /
振动响应 /
分缝隔振 /
设计优化
{{custom_keyword}} /
Key words
foundation /
centrifuge /
vibration response /
joint isolation /
design optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]侯瑜京.土工离心机振动台及其试验技术[J].中国水利水电科学研究院学报,2006,4(I):15-22.
HOU Yujing.Centrifuge shakers and testing technique[J].Hydropower Research,2006,4(1):15-22.
[2]尚银磊,李德玉,欧阳金惠.大型水电站厂房振动问题研究综述[J].中国水利水电科学研究院学报,2016,14(1):48-52+59.
SHANG Yilei,LI Deyu,OUYANG Jinhui. Review on powerhouse self-oscillation characteristics of a large-scale power station[J]. Journal of China Institute of Water Resources and Hydropower Research,2016,14(1):48-52+59.
[3]王永志, 黄浩华, 袁晓铭,等. 振动容量40gt大型动力离心机基础稳定性研究[J]. 土木工程学报, 2013(增刊2):207-213.
WANG Yongzhi, HUANG Haohua, YUAN Xiaoming, et al. Study on the foundation stability of large scale dynamic centrifuge with shaking capacity of 40gt[J]. China Civil Engineering Journal. 2013(Suppl.2):207-213.
[4]白冰. 水电站厂房多机组段振动相互影响研究[D]. 天津:天津大学.
[5]陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价[J].岩土工程学报,2011,33(12):1887-1894.
CHEN Yunmin,HAN Chao,LING Daosheng,et a1.Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J].Chinese Journal of Geotechnical Engineering,2011,33(12):1887-1894.
[6]陈婧, 马震岳. 水电站厂房振动和裂缝问题的研究与治理[J]. 水利水电技术, 2009, 40(7):32-35.
CHEN Jing, MA Zhenyue. Study and prevention of vibration and cracking for powerhouse in hydropower station[J]. Water Resources and Hydropower Engineering.2009, 40(7):32-35.
[7]欧阳金惠, 陈厚群, 李德玉. 三峡电站厂房结构振动计算与试验研究[J]. 水利学报, 2005(4):0484-0490.
OUYANG Jinhui,CHEN Houqun,LI Deyu. Computation of vibration in powerhouse of Three Gorges Project and prototype verification[J]. Journal of Hydraulic Engineering, 2005(4):0484-0490.
[8]王学谦, 赵兰浩. 抽水蓄能电站地下厂房振因仿真分析[J]. 南水北调与水利科技, 2013, 11(3):76-81.
WANG Xueqian, ZHAO Lanhao. Simulation Analysis of the Vibration Causes of Underground Powerhouse in Pumped Storage Power Station[J]. South-to-North Water Transfers and Water Science&Technology, 2013, 11(3):76-81.
[9]曹玺, 刘启明, 占浩,等. 仙居抽水蓄能电站地下厂房振动数值模拟分析与安全评价[J]. 南水北调与水利科技, 2018, 16(4):195-201.
CAO Xi, LIU Qiming, ZHAN Hao, et al. Numerical analysis and safety evaluation of the underground powerhouse of the Xianju pumped-storage Project. South-to-North Water Transfers and Water Science&Technology, 2018, 16(4):195-201.
[10]党康宁,刘云贺,王媛,等.水电站进水塔启闭机房排架振动特性[J].南水北调与水利科技,2016,14(4):129-134.
DANG Kangning,LIU Yunhe,WANG Yuan,et a1.Vibration characteristics of hoist room frame on intake tower of hydroelectric power station[J].South-to-North Water Transfers and Water Science & Technology,2016,14(4):129-134.
[11]张存慧, 马震岳, 周述达,等. 大型水电站厂房结构流固耦合分析[J]. 水力发电学报, 2012(6):192-197.
ZHANG Cunhui, MA Zhenyue,ZHOU Shuda et a1.Analysis of fluid-solid interaction vibration characteristics of large-scale hydropower house[J].Journal of Hydr0electric Engineering,2012(6):192-197.
[12] TIAN Z , ZHANG Y , MA Z , et al. Effect of concrete cracks on dynamic characteristics of powerhouse for giant-scale hydro-station[J]. Transaction of TianJin University), 2008, 14(4):307-312.
[13]王永志,袁晓铭,孙锐.大型振动离心机设备设计关键技术研究[J].世界地震工程,2011,27(2):113—123.
WANG Yongzhi,YUAN Xiaoming,SUN Rui.Critical techniques of design for large scale centrifugal shakers[J].World Earthquake Engineering,201l,27(2):113-123.
[14]韩芳,蔡元奇,朱以文.十三陵抽水蓄能电站地下厂房结构动力分析[J].武汉大学学报(工学版),2007(5):91-94.
HAN Fang,CAI Yuanqi.ZHU Yiwen. Dynamical analysis on Shisanling pumped-storage power plant underground powerhouse[J].Engineering Journal of Wuhan University.2007(5):91-94.
[15]练继建,张辉东,王海军.水电站厂房结构振动响应的神经网络预测[J].水利学报,2007(3):361-364.
LIAN Jijian,ZHANG Huidong,WANG Haijun.Prediction of vibration response of powerhouse structures by means of artificial neural network method[J]. Jour nal of Hydraulic Engineering.2007(3):361-364.
[16] 李航,沈振中,马保泰,等.某泵站厂房振源识别与振动成因[J].南水北调与水利科技,2020,18(5):151-156.
LI Hang, SHEN Zhenzhong, MA Baotai,et al. Identification of vibration source and causes of vibration in a pumping station building[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(5) : 151-156.
[17]孙万泉, 马震岳, 赵凤遥. 抽水蓄能电站振源特性分析研究[J]. 水电能源科学, 2003(4):78-80.
SUN Wanquan, MA Zhenyue, ZHAO Fengyao. Analysis and Study on Vibration Source Characteristic of Pumped Storage Powerplant[J]. Water Resources and Power, 2003(04):78-80.
[18]李炎. 当前我国水电站(混流式机组)厂房结构振动的主要问题和研究现状[J]. 水利水运工程学报, 2006, (1):74-77.
LI Yan. Main problems and state of art of structural vibration of hydroelectric stations in China[J]. Hydro-Science and Engineering, 2006, (1):74-77.
[19]孙锐,袁晓铭,工永志,等.NEES系统中振动离心机最新进展及国内振动离心机发展设想[J],世界地震工程,2010,26(1):3l一39.
SUN Rui, YUAN Xiaoming, WANG Yongzhi,et a1.Latest progress of centrifugal shaker in NEES and developmental conception of domestic centrifugal shaker[J].World Earthquake Engineering,2010,26(1):31-39.
[20]张飞, 周喜军, 孙慧芳, 等. 水力激振作用下的蓄能机组泵工况稳定性分析[ J] . 南水北调与水利科技, 2017,15( 5) : 202-208.
ZHANG Fei, ZHOU Xijun, SUN Huifang, et al. Stability of pumped sto rag e unit in pump operation mode under hydraulic ex citation[J] . South-to-North Water Transfers and Water Science & Technology ,2017, 15( 5) : 202-208.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}