土层参数随机性对高速铁路周围场地土振动传递的影响

李东伟1,曹艳梅2,陈斌1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 121-126.

PDF(1794 KB)
PDF(1794 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 121-126.
论文

土层参数随机性对高速铁路周围场地土振动传递的影响

  • 李东伟1,曹艳梅2,陈斌1
作者信息 +

Effect of the randomness of soil parameters on the transmission of ground vibration near high-speed railway

  • LI Dongwei1,CAO Yanmei2,CHEN Bin1
Author information +
文章历史 +

摘要

为探究场地土层参数随机分布对高速铁路周围场地土振动传递的影响,本文分别考虑了土层剪切波速、材料阻尼比以及二者双随机变量下的3种场地土参数随机分布,并基于Toro统计模型采用Monte Carlo方法分别模拟200组工况,输入建立的高速列车-轨道-场地土耦合系统模型中计算高速列车经过时场地土表面的振动响应。并将随机振动响应1/3倍频程振级、Z振级及其95%置信水平的置信区间与确定性土参数的振动响应进行比较,探究土参数随机性对高速铁路周围场地土振动传递的影响,进而采用随机振动响应标准差进行土参数随机分布的敏感性分析。研究结果表明:土参数随机性对高速铁路周围场地土振动传递的影响较大,剪切波波速单随机变量对场地土振动响应各频带1/3振级均有较大影响,材料阻尼比单随机变量对场地土振动响应的低频影响较小,高频影响较大。铁路交通环境振动评估及预测时建议考虑土层参数随机分布对其产生的影响。
关键词:土层参数随机分布;列车-轨道-场地土耦合模型;1/3倍频程振级;Z振级;置信区间;场地土振动传递

Abstract

In order to explore the influence of the random distribution of site soil parameters on the transmission of site soil vibration around high-speed railway, this paper considers three random distributions of site soil parameters under the shear wave velocity of soil layer, material damping ratio and both double random variables. Based on the Toro statistical model, the Monte Carlo method is used to simulate 200 sets of working conditions respectively and input the established high-speed train-track-site soil coupling system model to calculate the vibration response of the site soil surface when the high-speed train passes by. The random vibration response of 1/3 octave vibration level, Z vibration level and its 95% confidence interval are compared with the vibration response of deterministic soil parameters to investigate the influence of the randomness of soil parameters on the vibration transmission of the site soil around the high-speed railway, and then the sensitivity analysis of the random distribution of soil parameters is carried out using the standard deviation of random vibration response. The results of the study show that: the randomness of soil parameters has a great influence on the vibration transmission of the site around the high-speed railway, and the single random variable of shear wave velocity has a large influence on the vibration response of site soil in each frequency band 1/3 vibration level, and the single random variable of material damping ratio has a small influence on the low frequency and a large influence on the high frequency of site soil vibration response. It is suggested to consider the influence of the random distribution of soil parameters when assessing and predicting the vibration of the railway traffic environment.
Keywords: Random distribution of soil layer parameters; train-track-subsoil coupling model; 1/3 octave vibration level; Z vibration level; Site soil vibration transmission.

关键词

土层参数随机分布 / 列车-轨道-场地土耦合模型 / 1/3倍频程振级 / Z振级 / 置信区间 / 场地土振动传递

Key words

Random distribution of soil layer parameters / train-track-subsoil coupling model / 1/3 octave vibration level / Z vibration level / Site soil vibration transmission.

引用本文

导出引用
李东伟1,曹艳梅2,陈斌1. 土层参数随机性对高速铁路周围场地土振动传递的影响[J]. 振动与冲击, 2022, 41(14): 121-126
LI Dongwei1,CAO Yanmei2,CHEN Bin1. Effect of the randomness of soil parameters on the transmission of ground vibration near high-speed railway[J]. Journal of Vibration and Shock, 2022, 41(14): 121-126

参考文献

[1] Rathje E M, Kottke A R, Trent W L. Influence of input motion and site property variabilities on seismic site response analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2010, 136(4): 607-619.
[2] Barani S, De Ferrari R, Ferretti G. Influence of soil modeling uncertainties on site response[J]. Earthquake Spectra. 2013, 29(3): 705-732.
[3] Field E H, Jacob K H. Monte-Carlo simulation of the theoretical site response variability at turkey flat, california, given the uncertainty in the geotechnically derived input Parameters[J]. Earthquake Spectra. 1993, 9(4): 669-701.
[4] 张海. 土层参数的随机性对场地传递函数的影响[D]. 天津:天津大学, 2004.
ZHANG Hai. Effect of Parameter Variations on soil transfer function[D]. Tianjin University, 2004.
[5] Schevenels M. The impact of uncertain dynamic soil characteristics on the prediction of ground vibration[D]. Leuven: Katholieke Universiteit Leuven, 2007.
[6] 曹艳梅,李东伟,张玉玉,等. 基于贝叶斯理论及MCMC-MH算法推演地基土材料阻尼比的概率分布模型[J]. 振动与冲击. 2021, 40(08): 216-222.
CAO Yanmei, LI Dongwei, ZHANG Yuyu, et al. [J]. Inversion of probability distribution model of soil damping ratio based on Bayesian theory and MCMC-MH algorithm. [J]. Journal of Vibration and Shock. 2021, 40(08): 216-222.
[7] 刘章军,郑丽慧,阮鑫鑫. 考虑场地土参数随机性和相关性的地震动降维模拟[J]. 振动与冲击. 2021, 40(01): 165-172.
LIU Zhangjun, ZHENG Lihui, RUAN Xinxin. Dimension reduction simulation of ground motion considering randomness and correlation of site soil parameters[J]. Journal of Vibration and Shock. 2021, 40(01): 165-172.
[8] 程强,罗书学,彭雄志. 相关距离与土性参数的关系及计算方法[J]. 西南交通大学学报. 2000(05): 496-500.
CHENG Qiang, LUO Shu-xue, PENG Xiong-zhi. Correlation of scale of fluctuation with soil property parameters and its calculation method[J]. Journal of southwest jiaotong University. 2000(05): 496-500.
[9] 王建文,周盛,陈峰,等. 宁波软黏土土性相关距离计算分析[J]. 人民长江. 2020, 51(1): 208-212, 220.
WANG Jianwen, ZHOU Sheng, CHEN Feng, et al. Calculation of correlation distance of Ningbo soft clay[J]. Yangtze River. 2020, 51(1): 208-212, 220.
[10] 闫澍旺,朱红霞,刘润,等. 关于土层相关距离计算方法的研究[J]. 岩土力学. 2007(08): 1581-1586.
YAN Shuwang, ZHU Hongxia, LIU Run1, et al. Study on methods for estimating correlation distance of soil layers[J]. Rock and Soil Mechanics. 2007(08): 1581-1586.
[11] 朱志辉,余志武,朱玉龙,等. 车-桥振动诱发周围环境及建筑物振动的分析[J]. 铁道学报. 2013, 35(04): 102-109.
ZHU Zhihui, YU Zhiwu, ZHU Yulong, et al. Analysis on environment and building vibration induced by passing trains on bridge structures[J]. Journal of the china railway society. 2013, 35(04): 102-109.
[12] 李子惠. 高速列车-轨道-地基土非平稳随机振动分析及场地反应谱研究[D]. 北京:北京交通大学, 2019.
Li Zihui. Non-stationary random vibration analysis and site response spectrum study of high-speed train-track-foundation soil[D]. Beijing: Beijing Jiaotong University, 2019.
[13] 杨林. 高速列车作用下周期性桥梁结构周围场地振动及反应谱分析[D]. 北京:北京交通大学, 2020.
YANG Lin. Field vibrations and its response spectrum analysis around the periodic bridge subjected to high-speed trains[D]. Beijing: Beijing Jiaotong University, 2020.
[14] Toro G R. Probabilistic models of site velocity profiles for generic and site-specific ground-motion amplification studies[R]. N Y: Brookhaven National Laboratory., 1995.
[15] Degrande G. The impact of uncertain dynamic soil characteristics on the prediction of ground vibrations[D]. Katholieke Universiteit Leuven, 2007.
[16] 姚敬茹. 岩土参数空间相关性与随机场模拟研究及应用[D]. 山东:山东建筑大学, 2018.
YAO Jingru. Study and application on the spatial correlation of soil parameters and random field simulation[D]. Shandong: Shandong Jianzhu University, 2018.
[17] 张闵. 表面波谱法现场测试及地基土动参数的反演[D]. 北京: 北京交通大学, 2016.
ZHANG Min. Field test of surface wave spectrum analysis and dynamic parameters inversion of foundation soil[D]. Beijing: Beijing Jiaotong University, 2016.
[18] 王薇. 移动荷载作用下地基土振动的TLM-PML理论分析方法及振动特性研究[D]. 北京: 北京交通大学, 2016.
Wang Wei. Study on theoretical method for soil vibrations based on TLM-PML and vibration characteristics induced by moving loads[D]. Beijing: Beijing Jiaotong University, 2016.
[19] 曹艳梅. 列车引起的自由场地及建筑物振动的理论分析和试验研究[D]. 北京交通大学, 2006.
Cao Yanmei. Theoretical and experimental study on train-induced vibrations of free field and buildings [D]. Beijing: Beijing Jiaotong University, 2006.
[20] 国家环境保护局. 城市区域环境振动标准: GB 10070—88[S]. 北京, 1989.
State Environmental Protection Agency of China. Standard of vibration in urban area environment GB 10070—88[S]. Beijing, 1989.
[21] International Standard. ISO8041 Human response to vibration-measuring instrumentation[S]. 2005.

PDF(1794 KB)

464

Accesses

0

Citation

Detail

段落导航
相关文章

/