典型薄壁结构抗鸟撞动响应试验及数值模拟研究

李振华,刘军

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 127-134.

PDF(2034 KB)
PDF(2034 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 127-134.
论文

典型薄壁结构抗鸟撞动响应试验及数值模拟研究

  • 李振华,刘军
作者信息 +

Experimental and numerical simulation study on the bird impact responses of typical thin-walled structures

  • LI Zhenhua,LIU Jun
Author information +
文章历史 +

摘要

设计满足鸟撞适航条款要求的飞机薄壁结构,必须进行典型薄壁结构抗鸟撞动响应试验及数值模拟研究。对某飞机机头上壁板薄壁结构进行了鸟撞试验,并采用光滑粒子流体动力学–有限元法(smoothed particle hydrodynamics–finite element method,SPH–FE)耦合方法,基于商用显式有限元分析软件PAM-CRASH,建立了鸟撞上壁板薄壁结构数值计算模型,计算结果表明,上壁板结构损伤模式主要包括蒙皮撕裂和铆钉断裂,计算结果与试验结果良好的一致性验证了本文数值计算模型及方法的合理性。在此基础上,建立了鸟撞典型薄壁结构数值计算模型,研究了鸟弹不同撞击角度和速度下典型薄壁结构蒙皮极限厚度值,结果表明,随着撞击速度的增大,蒙皮极限厚度的变化对撞击角度十分敏感。拟合了典型薄壁结构蒙皮极限厚度与鸟弹撞击角度和速度之间的数学关系,为飞机薄壁结构抗鸟撞设计提供技术支撑。
关键词:鸟撞;光滑粒子流体动力学–有限元法(SPH–FEM);薄壁结构;数值模拟;PAM-CRASH

Abstract

In order to design thin-walled aircraft structures that meet the requirements of airworthiness of bird strike, it is necessary to carry out experiments and numerical simulation on the response of typical thin-walled aircraft structures to bird strike. This paper has carried out on a bird strike aircraft nose wainscot thin-walled structure test, and USES the SPH - coupled FEM method, based on the explicit finite element analysis software, commercial PAM - CRASH, established the bird hit the wall thin-walled structure numerical model, and the results show that the wall structural damage fracture model mainly includes skin tear and rivet, good consistency with the test results as demonstrated in this paper, the rationality of the numerical calculation model and method. On this basis, a numerical model of typical thin-walled structures was established, and the ultimate thickness of typical thin-walled structures was studied at different impact angles and velocities of bird projectile. The results show that with the increase of impact velocity, the change of ultimate thickness of the skin is very sensitive to the impact Angle. The mathematical relationship between the ultimate thickness of the skin of a typical thin-walled structure and the impact Angle and velocity of bird projectile is fitted, which provides technical support for the design of anti-bird impact of thin-walled aircraft structure.
Key words: Bird strike; smoothed particle hydrodynamics–finite element method (SPH–FEM); thin-walled structure ; numerical simulation ;PAM-CRASH

关键词

鸟撞;光滑粒子流体动力学&ndash / 有限元法(SPH&ndash / FEM);薄壁结构;数值模拟;PAM-CRASH

Key words

Bird strike / smoothed particle hydrodynamics–finite element method (SPH–FEM) / thin-walled structure / numerical simulation ;PAM-CRASH

引用本文

导出引用
李振华,刘军. 典型薄壁结构抗鸟撞动响应试验及数值模拟研究[J]. 振动与冲击, 2022, 41(14): 127-134
LI Zhenhua,LIU Jun. Experimental and numerical simulation study on the bird impact responses of typical thin-walled structures[J]. Journal of Vibration and Shock, 2022, 41(14): 127-134

参考文献

[1]. 刘信超,徐亚芳,王露晨,等. 运输类飞机风挡鸟撞位置影响分析研究[J]. 振动与冲击, 2019, 38(17): 95-102.
LIU Xinchao, XU Yafang, WANG Luchen, et al. Effects of bird strike position and boundary clamping component  on transport airplane windshield safety. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(17): 95-102.
[2]. LIU J, LI Y L, YU X C, et al. Design of aircraft structures against threat of bird strikes[J].Chinese Journal of Aeronautics, 2018,Volume 31, Issue 7: 1535-1558.
[3]. 刘富,张嘉振,童明波,等 . 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析[J]. , 2014, 33(4): 113-118.
Liu Fu,Zhang Jia zhen, Tong Ming bo, et al. Dynamic mechanical experiment and bird impact dynamic response analysis of 2024-T3 aluminum alloy plate[J]. Journal of Vibration and Shock, 2014, 33(4): 113-118.
[4]. 冯振宇,霍雨佳,裴惠,等. 明胶鸟弹撞击力传感器试验及数值建模方法研究[J]. 振动与冲击, 2019, 38(12): 206-212.
FENG Zhenyu, HUO Yujia, PEI Hui, et al. An experiment and numerical modeling method of gelatin bird striking on force sensors. JOURNAL OF VIBRATION AND SHOCK, 2019, 38(12): 206-212
[5]. 刘军,李玉龙,石霄鹏,等.鸟体本构模型参数反演Ⅱ:模型参数反演研究[J].航空学报,2011,32(05):812-821.
     Liu Ju, Li YuLong Shi XiaoPeng, et al. Bird body Ⅱconstitutive model parameters of inversion, model parameter inversion study [J]. Acta Aeronautica et Astronautica Sinica,
     2011, 32 (5) :812-821.
[6]. 王金金,李志刚,杨海峰,等. 光学玻璃材料动力学试验与鸟撞研究[J]. 振动与冲击, 2021, 40(7): 216-221.
WANG Jinjin, LI Zhigang, YANG Haifeng, et al. Dynamic tests of optical glass material and bird impact. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(7): 216-221.
[7]. 谢灿军,童明波,刘 富,等.民用飞机平尾前缘鸟撞数值分析及试验验证[J]. 振动与冲击, 2015, 34(14): 172-178.
     XIE Chan Jun, TONG Ming Bo, LIU Fu, et al. Numericalanalysis and experimental verification of bird impact on civilaircraft's horizontal tail wing leading edge[J]. Journal of
     Vibration and Shock,2015,34(14):172-178.
[8]. 高俊,吴志斌,孔令勇,等. 基于不同构型辅助梁的民机尾翼前缘设计与抗鸟撞性能研究[J]. 振动与冲击, 2021, 40(8): 237-246.
GAO Jun,WU Zhibin,KONG Lingyong,et al. Design and bird-strike resistance performance research of civil aircraft tail leading edge using different auxiliary spars. JOURNAL OF VIBRATION AND SHOCK, 2021, 40(8): 237-246.
[9]. 胡文刚, 林长亮, 王刚, 等.多欧拉域耦合法在平尾鸟撞中的应用[J]. 航空学报, 2020, 41(1): 222860-222860.
     HU Wen Gang, LIN Chang Liang, WANG Gang, et al. Multi-Euler domain coupling method in bird strike withflattail[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(1):222860-222860
[10]. 陈园方,李玉龙,刘军,等.典型前缘结构抗鸟撞性能改进研究[J].航空学报,2010,31(09):1781-1787.
     CHEN Yuan Fang, Li Yu Long, Liu Jun, et al. Study of BirdStrike on an Improved Leading Edge Structure[J]. ActaAeronautica et Astronautica Sinica, 2010, 31(9): 1781-1787.
[11]. 张永康,李玉龙,汪海青.典型梁-缘结构鸟撞破坏的有限元分析[J].爆炸与冲击,2008(03):236-242.
     Zhang Yong Kang, Li Yu Long, Wang Hai Qing. Finiteelement analysis of bird-impact failure of typical beam-edge structures [J].Explosion and Shock Waves,2008(03):236-242.
[12]. LIU J, LI Y L, YU X C, et al. A novel design for rein-forcing the aircraft tail leading edge structure against bird strike[J].International Journal of Impact Engineering,Volume 105,2017:89-101,
[13]. 刘洋,张建军,张积亭,等.典型金属加筋板鸟撞实验研究[J].机械科学与技术,2015,34(09):1461-1466.
     LIU Yang, ZHANG Jian Jun, ZHANG Ji Ting, et al. Experimental Study on Bird Impact of Typical Metal Reinforcement Plate [J]. Mechanical Science and Technology  for Aerospace Engineering,2015,34(09):1461-1466.
[14]. YU Z L, XUE P, YAO P L, et al. Analytical determina-tion of the critical impact location for wing leading edge under bird strike[J]. Latin American Journal of Solids and Structures,2019,16(1):e152.
[15]. 倪阳.鸟撞薄壁结构响应分析及在平尾前缘中的应用[D]. 西北工业大学,2015:20-28.
[16]. Hassan Pahange, Mohammad Hossein Abolbashari. Mass and performance optimization of an airplane wing leading edge structure against bird strike using Taguchi-based grey relational analysis[J].Chinese Journal of Aeronautics,2016,29(04):934-944.
[17]. Belkhelfa, F.-Z. , S. Boukraa. Damage prediction and test validation of bird impacts on aircraft leading edge’s structures[J]. International Journal of Crashworthiness,2020: 1-18.
[18]. F. Di Caprio, D. Cristillo, S. Saputo, M. Guida, A. Riccio, Crashworthiness of wing leading edges under bird impact event[J].Composite Structures, 2019,Volume 216:39-52.
[19]. ZHANG D H, FEI Q G. Effect of bird geometry and impact orientation in bird striking on a rotary jet-engine fananalysis using SPH method[J]. Aerospace Science and Technology,2016,54: 320 -329.
[20]. MCCALLUM S C,SHOJI H,AKIYAMA H. Development of an advanced multi- material bird-strike model using the smoothed particle hydrodynamics method[J]. International Journal of Crashworthiness, 2013,18(6): 579-596.
[21]. WILBECK J S, RAND J L. The development of a substitutebird model[J]. Journal of Engineering for Power, 1981 ,103(4 ) :725-730.
[22]. HEDAYATI R,ZIAEI R S. A new bird model and theeffect of bird geometry in impacts from variousorientatons[J]. Aerospace Science and Technology, 2013,28(1 ):9-20.
[23]. HEDAYATI R,SADIGHI M,MOHAMMADI-AGHDAM M. On the difference of pressure readings from the numerical experimental and theoretical results in different bird strike studies[J]. Aerospace Science and Technology, 2014,32(1):260-266

PDF(2034 KB)

435

Accesses

0

Citation

Detail

段落导航
相关文章

/