具有非线性刚度边界的杆梁结构的动态特性分析

许文峰1,唐斌1,BRENNAN Michael J.2,MANCONI Elisabetta3,GONALVES Paulo J. Paupitz

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 158-163.

PDF(2385 KB)
PDF(2385 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 158-163.
论文

具有非线性刚度边界的杆梁结构的动态特性分析

  • 许文峰1,唐斌1,BRENNAN Michael J.2,MANCONI Elisabetta3,GONALVES Paulo J. Paupitz4
作者信息 +

Analysis of the dynamic characteristics of rod and beam structures with nonlinear stiffness boundaries

  • XU Wenfeng1,TANG Bin1,BRENNAN Michael J.2,MANCONI Elisabetta3,GONALVES Paulo J. Paupitz4
Author information +
文章历史 +

摘要

许多工程结构中存在着非线性边界,而非线性边界会对结构振动产生一定的影响。对非线性刚度弹簧固定的杆梁结构进行了动力学特性研究。对于杆结构,分别采用了行波法和分离变量法进行分析,并通过比较得到了两种方法之间的联系。对于梁结构,分别考虑了入射传递波和入射近场波,应用谐波平衡法得到了无量纲频率、位移、反射系数及相位等参数之间的关系。最后,应用相位闭合原理与分离变量法得到了杆和梁的骨架与频响曲线。为了验证理论计算的准确性与有效性,对杆梁模型进行了有限元数值仿真。结果表明,理论解与仿真解基本吻合。
关键词:非线性边界;相位闭合原理;谐波平衡法;骨架曲线

Abstract

Nonlinear boundaries exist in many engineering structures and significantly influence the vibration of systems. The dynamic characteristics of a rod or beam structure with nonlinear stiffness boundaries were studied. The traveling wave method and the variable separation method were used to analyze the dynamic characteristics of the rod, and the relationship between the two approaches was investigated. For the beam, the incident propagating and nearfield waves were considered. The relationships between the dimensionless frequency, displacement, reflection coefficient, and phase were obtained using the harmonic balance method. Finally, the backbone and frequency response curves of the rod and beam were obtained by using the phase closure principle and the variable separation method. In order to verify the accuracy and effectiveness of the theoretical calculations, a finite element numerical simulation was carried out for the rod and beam models. The results show that the theoretical solution compares well with the numerical simulation.
Key words: nonlinear boundary; phase closure principle; harmonic balance method; backbone curve

关键词

非线性边界 / 相位闭合原理 / 谐波平衡法 / 骨架曲线

Key words

nonlinear boundary / phase closure principle / harmonic balance method / backbone curve

引用本文

导出引用
许文峰1,唐斌1,BRENNAN Michael J.2,MANCONI Elisabetta3,GONALVES Paulo J. Paupitz. 具有非线性刚度边界的杆梁结构的动态特性分析[J]. 振动与冲击, 2022, 41(14): 158-163
XU Wenfeng1,TANG Bin1,BRENNAN Michael J.2,MANCONI Elisabetta3,GONALVES Paulo J. Paupitz4. Analysis of the dynamic characteristics of rod and beam structures with nonlinear stiffness boundaries[J]. Journal of Vibration and Shock, 2022, 41(14): 158-163

参考文献

[1]  Kovacic I, Brennan M J. The Duffing Equation[M]. New York: John Wiley and Sons, 2011.
[2]  Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. New York: Wiley-VCH, 1979.
[3]  Mead D J. Waves and modes in finite beams: Application of the phase-closure principle[J]. Journal of Sound and Vibration. 1994, 171(5): 695-702.
[4]  黄建亮,肖龙江. 1:1内共振条件下受基础激励屈曲梁的非线性振动和分岔分析[J]. 振动工程学报. 2020, 33(04): 698-708.
Huang Jianliang,Xiao Longjiang. Nonlinear vibration and bifurcation analysis of a buckling beam subjected to fundamental excitation under 1∶1 internal resonance[J]. Journal of Vibration Engineering. 2020, 33(04): 698-708.
[5]  Nayfeh A, Balachandran B. Applied nonlinear dynamics[M]. New York: Wiley-VCH, 1995.
[6]  Rao S S, Mechanical Vibrations, Fourth Edition[M]. New York: Prenson education, 2009.
[7]  陈昌亚,宋汉文,王德禹,等. 卫星振动试验中固有频率“漂移”现象初步研究[J]. 振动与冲击. 2003(04): 25-27.
Chen Changya, Song Hanwen, Wang Deyu,et al. Preliminary study on natural frequency "drift" phenomenon in satellite vibration test[J]. Vibration and Shock. 2003(04): 25-27.
[8] Dokainish M A, Kumar R. Experimental and theoretical analysis of the transverse vibrations of a beam having bilinear support[J]. Experimental Mechanics. 1971, 11(6): 263-270.
[9] Tabaddor M. Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam[J]. International Journal of Solids and Structures. 2000, 37(36): 4915-4931.
[10] Gudmundson P S. On the accuracy of the harmonic balance method concerning vibrations of beams with nonlinear supports[J]. Ingenieur-Archiv. 1989, 59(5): 333-344.
[11] Mei C, Mace B R. Wave reflection and transmission in timoshenko beams and wave analysis of timoshenko beam structures[J]. Journal of Vibration and Acoustics. 2005, 127(4): 382-394.
[12] Mace B R. Wave reflection and transmission in beams[J]. Journal of Sound and Vibration. 1984, 97(2): 237-246.
[13] Chouvion B, Popov A A, Mcwilliam S,et al. Vibration modelling of complex waveguide structures[J]. Computers and structures. 2011, 89(11): 1253-1263.
[14] Chouvion B. Vibration analysis of beam structures with localized nonlinearities by a wave approach[J]. Journal of Sound and Vibration. 2019, 439: 344-361.
[15] Kovacic I, Michael J, Brennan, LINETON B. On the resonance response of an asymmetric Duffing oscillator[J]. International Journal of Non-Linear Mechanics. 2008, 43(9): 858-867.
[16] Tang B, Brennan M J, Lopes V,et al. Using nonlinear jumps to estimate cubic stiffness nonlinearity: An experimental study[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2016, 230(19): 3575-3581.
[17] Tang B, Brennan M J, Gatti G. Use of the dynamic stiffness method to interpret experimental data from a nonlinear system[J]. Journal of Sound and Vibration. 2018, 421: 91-110.
[18] Cremer L, Heckl M, EE Ungar,et al. Structure-Borne Sound[J]. Physics Today, 1975, 28(1):81-85.
[19] Santo D, Mencik J, Tang B,et al. On the dynamic behavior of rods and beams with nonlinear boundary stiffess[C]// Ibero-Latin American Congress on Computational Methods in Engineering. Compiègne‎: Université de Technologie de Compiègne, 2018.
[20] Brennan M J, Manconi E, Tang B,et al. Wave reflection at the end of a waveguide supported by a nonlinear spring[C]// Cunha A. International Conference on Structural Dynamics. München: Technische Universität München,2014. 2019-2025.

PDF(2385 KB)

253

Accesses

0

Citation

Detail

段落导航
相关文章

/