基于耗能保险丝的桥梁双柱墩减震控制研究

秦洪果,李萍,石岩,王瑞

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 190-198.

PDF(4246 KB)
PDF(4246 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 190-198.
论文

基于耗能保险丝的桥梁双柱墩减震控制研究

  • 秦洪果,李萍,石岩,王瑞
作者信息 +

Seismic damage control of bridge bents with double columns based on structural fuses

  • QIN Hongguo,LI Ping,SHI Yan,WANG Rui
Author information +
文章历史 +

摘要

双柱式排架墩被广泛应用于桥梁下部结构,同时在历次破坏性地震中震害普遍且严重。基于保险丝的损伤控制理念,可通过设置防屈曲支撑(buckling restrained brace ,BRB)等可更换的耗能装置来提升双柱墩的侧向承载力和耗能能力。当BRB按人字形和单斜式布置时,其耗能能力不能得到充分利用。本文将肘节式支撑系统和BRB相结合,发展一种能够放大BRB位移的肘节式耗能减震体系,从而提升了BRB的耗能减震能力,并针对此保险丝体系,推导出由桥墩材料、几何属性和位移放大系数等无量纲参数控制的BRB核心段长度取值范围表达式,还绘制了位移放大系数的三维等高线图用于保险丝的设计。选择具有不同破坏形式的两个双柱墩进行保险丝设计,确定BRB的设计参数,建立动力分析模型并输入4组不同类型的地震动进行增量动力分析,考察了人字形、单斜式和肘节式BRB保险丝体系在不同地震动强度下对双柱墩的减震效果。结果表明:同等设计条件下肘节式BRB体系的减震效果最好,BRB的变形得到了放大并充分发挥了其滞回耗能作用,从而将双柱墩的地震损伤控制在轻微破坏甚至于弹性状态,而对应的人字形BRB体系减震效果则最差。
关键词:双柱式排架墩;结构保险丝;防屈曲支撑;肘节式BRB体系;耗能

Abstract

Bridge bents with double columns are widely used in bridge substructure. However, bents have suffered serious damage in previous destructive earthquakes. According to the damage-control concept based on structural fuse, the lateral load and energy dissipation capacity of double-column bents can be improved by implementing replaceable energy dissipation devices. The energy dissipation capacity of buckling restrained brace (BRB) cannot be used to the full when arranged in chevron or single diagonal type. In this paper, the toggle-BRB system was developed, which can amplify the displacement and improve the energy dissipation of BRB. For the fuse system, the formula of the length range of BRB core controlled by dimensionless parameters such as material, geometric properties and displacement amplification factor of bents was derived. The three-dimensional contour charts of displacement amplification factor for reference in fuse design were drawn. Taking two double-column bents with different failure modes as examples for fuse design, and the parameters of BRB were determined. The dynamic analysis models were established respectively, and four groups of ground motions with different types were input for incremental dynamic analysis. The seismic isolation effects of chevron, single diagonal and toggle BRB systems on double-column bents under different intensities of ground motions were investigated. The results show that compared with chevron and single diagonal systems with the same conditions, the toggle BRB system has the best seismic isolation effect. BRB, whose deformation is amplified, plays a full role in deformation and energy dissipation, and can control the seismic damage of double-column bents in the state of slight damage or even elastic. The seismic isolation effect of chevron BRB system is the worst.
Keywords: bridge bent; structural fuse; buckling restrained brace; toggle-BRB system; energy dissipation

关键词

双柱式排架墩 / 结构保险丝 / 防屈曲支撑 / 肘节式BRB体系 / 耗能

Key words

bridge bent / structural fuse / buckling restrained brace / toggle-BRB system / energy dissipation

引用本文

导出引用
秦洪果,李萍,石岩,王瑞. 基于耗能保险丝的桥梁双柱墩减震控制研究[J]. 振动与冲击, 2022, 41(14): 190-198
QIN Hongguo,LI Ping,SHI Yan,WANG Rui. Seismic damage control of bridge bents with double columns based on structural fuses[J]. Journal of Vibration and Shock, 2022, 41(14): 190-198

参考文献

[1] Kunnath SK, Gross JL. Inelastic response of the cypress viaduct to the Loma Prieta earthquake[J]. Engineering Structures, 1995, 17(7): 485-493.
[2] 陈乐生, 庄卫林, 赵河清, 等. 汶川大地震公路震害调查:桥梁[M]. 北京: 人民交通出版社, 2012.
CHEN Le-sheng, ZHUANG Wei-lin, ZHAO He-qing, et al. Report on highways’ damage in the Wenchuan earthquake: Bridges[M]. Beijing: China Communications Press, 2012.
[3] 石岩, 李军, 秦洪果, 等. 桥梁双柱式排架墩抗震性能研究进展述评[J]. 中国公路学报, 2021, 34(2): 134-154.
SHI Yan, LI Jun, QIN Hong-guo, et al. Review on seismic performance of bridge double-column bents[J]. China Journal of Highway and Transport, 2021, 34(2): 134-154.
[4] 袁万城,王思杰,李怀峰,等.桥梁抗震智能与韧性的发展[J].中国公路学报,2021,34(02):98-117.
YUAN Wan-cheng, WANG Si-jie, Li Huai-feng, et al. Development of intelligence and resilience for bridge seismic design[J]. China Journal of Highway and Transport, 2021 ,34 (02): 98-117.
[5] 韩强,贾振雷,周雨龙,等.震后可恢复功能桥梁结构之摇摆桥梁研究综述[J].中国公路学报,2021,34(02):118-133.
HAN Qiang, JIA Zhen-lei, ZHOU Yu-long, et al. Review of seismic resilient bridge structures: rocking bridges [J]. China Journal of Highway and Transport, 2021, 34(02): 118-133.
[6] McDaniel CC, Seible F. Influence of inelastic tower links on cable-supported bridge response[J]. Journal of Bridge Engineering, 2005, 10(3): 272-280.
[7] El-Bahey S, Bruneau M. Bridge piers with structural fuses and bi-steel columns. I: Experimental testing[J]. Journal of Bridge Engineering, 2011, 17(01): 25-35.
[8] El-Bahey S, Bruneau M. Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents[J]. Engineering Structures, 2011, 33(03): 1052-1061.
[9] 谢文, 孙利民, 魏俊. 附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J]. 中国公路学报, 2014, 27(03): 59-70.
XIE Wen, SUN Li-ming, WEI Jun. Experimental study on seismic performance of bridge piers with structural "fuse" members and its application[J]. China Journal of Highway and Transport, 2014, 27(03): 59-70.
[10] 孙治国, 华承俊, 石岩,等. 利用BRB实现桥梁排架基于保险丝理念的抗震设计[J]. 振动与冲击, 2015, 34(22): 199-205.
SUN Zhi-guo, HUA Cheng-jun, SHI Yan, et al. To realize the seismic design of the bridge bent frame based on the fuse concept with buckling-restrained braces (BRBs)[J]. Journal of Vibration and shock, 2015, 34(22): 199-205.
[11] 石岩, 王东升, 韩建平. 设置BRB桥梁排架墩基于位移抗震设计方法[J]. 土木工程学报, 2017, 50(7): 62-68.
SHI Yan, WANG Dong-sheng, HAN Jian-ping. Displacement-based design method for bridge bents with buckling-restrained braces (BRBs)[J]. China Civil Engineering Journal, 2017, 50(7): 62-68.
[12] 石岩, 张展宏, 韩建平, 等.设置BRB的桥梁排架墩抗震性能参数分析[J]. 工程科学与技术, 2018, 50(6): 71-76, 90.
SHI Yan, ZHANG Zhan-hong, HAN Jian-ping, et al. Parametric analysis of seismic performance for bridge bents with buckling-restrained braces (BRBs)[J]. Advanced Engineering Sciences, 2018, 50(6): 71-76, 90.
[13] 赵桂峰, 马玉宏. 阻尼器响应放大技术研究与应用进展[J]. 土木工程学报,2020,53(06):64-78.
ZHAO Gui-feng, MA Yu-hong. Research and Application Progress of damper response amplification technology[J]. China Civil Engineering Journal, 2020, 53(06): 64-78.
[14] Constantinou MC, Tsopelas P, Hammel W, et al. Toggle- brace-damper seismic energy dissipation systems[J]. Journal of Structural Engineering, 2001, 127(2): 105-112.
[15] Hwang JS, Huang YN, Hung YH. Analytical and experimental study of toggle-brace-damper systems[J]. Journal of Structural Engineering, 2005, 131(7):1035- 1043.
[16] Upadhyay A, Pantelides C P, Ibarra L. Residual drift mitigation for bridges retrofitted with buckling restrained braces or self-centering energy dissipation devices[J]. Engineering Structures, 2019, 199: 109663.
[17] Xiang N, Alam MS. Displacement-based seismic design of bridge bents retrofitted with various bracing devices and their seismic fragility assessment under near-fault and far-field ground motions[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 75-90.
[18] Iwata M, Murai M. Buckling‐restrained brace using steel mortar planks; performance evaluation as a hysteretic damper[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(14): 1807-1826.
[19] Usami T, Lu Z, Ge H. A seismic upgrading method for steel arch bridges using buckling‐restrained braces[J]. Earthquake Engineering and Structural Dynamics, 2005, 34(4‐5): 471-496.
[20] Priestley MJN. Myths and fallacies in earthquake engineering, revisited [M]. Pavia: Istituto Universitario di Studi Superiori di Pavia, 2003.
[21] LeBorgne MR. Modeling the post shear failure behavior of reinforced concrete columns[D]. Austin: The University of Texas at Austin, 2012.
[22] 孙治国,李宏男,司炳君,等.考虑桥墩剪切破坏的不规则桥梁排架抗震分析模型[J].应用基础与工程科学学报,2016,24(02):322-332.
SUN Zhi-guo, LI Hong-nan, SI Bing-jun, et al. Seismic analysis model for irregular bridge bents considering shear failure of the piers[J]. Journal of Basic Science and Engineering, 2016, 24(2): 322-332.
[23] 江义,杨迪雄,李刚.近断层地震动向前方向性效应和滑冲效应对高层钢结构地震反应的影响[J].建筑结构学报,2010,31(09):103-110.
JIANG Yi, YANG Di-xiong, LI Gang. Effects of forward directivity and fling step of near-fault ground motions on seismic responses of high-rise steel structure [J]. Journal of Building Structures, 2010, 31(09): 103-110.
[24] 石岩, 王东升, 孙治国. 近断层地震动下高速铁路桥梁减震设计方法[J]. 中国铁道科学, 2014, 35(6): 34-40.
SHI Yan, WANG Dong-sheng, SUN Zhi-guo. Seismic isolation design of high-speed railway bridges under near-fault ground motions[J]. China Railway Science, 2014, 35(6): 34-40.
[25] 王东升, 李宏男, 王国新. 双向地震动作用弹塑性反应谱研究[J]. 大连理工大学学报, 2005, 45(02): 248-254.
WANG Dong-sheng, LI Hong-nan, WANG Guo-xin. Research on elastoplastic response spectrum of bidirectional ground motion[J]. Journal of Dalian University of Technology, 2005, 45(02): 248-254.
[26] 李宏男,成虎,王东升.桥梁结构地震易损性研究进展述评[J].工程力学,2018,35(09):1-16.
LI Hong-nan, CHENG Hu, WANG Dong-sheng. A review of advances in seismic fragility research on bridge structures[J]. Engineering Mechanics, 2018, 35(9): 1-16.
[27] Hwang H, 刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析[J]. 土木工程学报, 2004, 37(6):47-51.
Hwang H, LIU Jing-bo. Seismic fragility analysis of reinforced concrete bridges[J]. China Civil Engineering Journal, 2004, 37(6):47-51.

PDF(4246 KB)

225

Accesses

0

Citation

Detail

段落导航
相关文章

/