
基于概率幅值解调的机械故障诊断方法研究
Mechanical fault diagnosis method based on probability amplitude demodulation
概率幅值解调 / 故障诊断 / 贝叶斯推理 / 滚动轴承 {{custom_keyword}} /
Probability amplitude demodulation / Bayesian inference / fault diagnosis / rolling bearing. {{custom_keyword}} /
[1] 于德介, 程军圣, 杨宇.机械故障诊断的HILBERT-HUANG变换方法[M]. 科学出版社, 2006.
YU De-jie,CHENG Jun-sheng,YANG Yu.The Manchine Fault Diagnosis Approach Based on theHilbert-HuangTransform[M].Beijing:Science Press,2006.75-76
[2] C. Chatfield. The Analysis of Time Series: An Introduction. Chapman & Hall/CRC,sixth edition, July 2003. ISBN 1584883170.
[3] 王惠中, 张岳.基于改进希尔伯特黄变换的电机故障特征提取方法研究[J].自动化与仪器仪表, 2014(07): 42-48.
Wang huizhiong, Zhang yue.Based on the improved Hilbert huang transform motor fault feature extraction method of research[J].Automation and instrumentation, 2014(07): 42-48.
[4] Turner R E. Statistical models for natural sounds[D]. University College London, 2010.
[5] Turner R E, Sahani M. Probabilistic amplitude demodulation[C]//International Conference on Independent Component Analysis and Signal Separation. Springer, Berlin, Heidelberg, 2007: 544-551
[6] Turner R E, Sahani M. Probabilistic amplitude and frequency demodulation[C]// Proceedings of the 24th International Conference on Neural Information Processing Systems.[S.l.] :NIPS,2011.
[7] Turner R E, Sahani M. Demodulation as Probabilistic Inference[J]. Audio Speech & Language Processing IEEE Transactions on, 2011, 19(8):2398-2411.
[8] Turner R E, Sahani M. Decomposing signals into a sum of amplitude and frequency modulated sinusoids using probabilistic inference[C]// 2012 IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto: IEEE, 2012.
[9] Turner R E, Sahani M. Statistical inference for single- and multi-band Probabilistic Amplitude Demodulation[C]// IEEE International Conference on Acoustics Speech & Signal Processing. IEEE, 2010:5466-5469.
[10] Vamoş C, Crăciun M. Numerical demodulation of a Gaussian white noise modulated in amplitude by a deterministic volatility[J]. European Physical Journal B, 2013, 86(4):1-8.
[11] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning[M]. Cambridge:MIT Press, 2006.
[12]万广通. 基于 LMD 和带通滤波解调变工下滚动轴承故障特征提取方法的研究[D]. 北京交通大学, 2018.
Wan guangtong.Based on LMD and band-pass filtering demodulation conditions of rolling bearing fault feature extraction method is studied[D].Beijing jiaotong university,2018.
[13]王平, 廖明夫. 滚动轴承故障诊断的自适应共振解调技术[J]. 航空动力学报, 2005, 20(4):606-612.
Wangping,Liao mingfu.,Adaptive Demodulated Resonance Technique for the Rolling Bearing Fault Diagnosis[J].Journal of Aerospace Power, 2005, 20(4):606-612.
[14]Hariprasad J, Roy U M, Ramasangu H. Design and Implementation of Universal Digital Demodulator Using Neural Network Approaches[M]//Emerging Trends in Photonics, Signal Processing and Communication Engineering. Springer, Singapore, 2020: 133-139.
/
〈 |
|
〉 |