面向船体结构动冰载荷监测的线性形函数识别方法研究

孔帅1,田于逵1,崔洪宇2,季顺迎2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 226-232.

PDF(1381 KB)
PDF(1381 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 226-232.
论文

面向船体结构动冰载荷监测的线性形函数识别方法研究

  • 孔帅1,田于逵1,崔洪宇2,季顺迎2
作者信息 +

Identification method using the combination of linear shape functions for the monitoring of dynamic ice load on ship structures

  • KONG Shuai1, TIAN Yukui1, CUI Hongyu2,  JI Shunying2
Author information +
文章历史 +

摘要

船体结构冰载荷监测系统中的载荷识别算法是对船舶在冰区安全运行进行实时评估的关键环节,而常用的影响系数矩阵法尚未考虑冰载荷的动力效应。在时域内将动冰载荷离散为诸多时间元,在每个时间元内利用线性形函数的组合形式逼近构造动冰载荷;通过结构的动力响应分析得到形函数的响应矩阵,并以此建立船体结构冰载荷识别的正问题。利用共轭梯度最小二乘迭代型正则化算法和终止迭代准则对冰载荷识别问题中的不适定性进行控制。本文数值算例和试验验证均表明该冰载荷识别模型具有良好的识别精度、求解速度及稳定性。
关键词:船体冰载荷;载荷识别;线性形函数;共轭梯度最小二乘法

Abstract

Load identification algorithm is the key to the real-time evaluation of safe operation of ship structures in the ice load monitoring system. However, the dynamic effect of ice load has not been considered yet in the Influence Coefficient Matrix method (ICM), which is typically adopted in the ice load identification. The dynamic ice load is discretized into multiple time elements in the time domain and the combination form of linear shape functions are used to construct the dynamic ice load approximately in each time element. The response matrix of the shape functions is calculated by structural dynamic response analysis and the forward problem of ice load identification is established. The iterative regularization method using conjugate gradient least squares and stopping criteria for iteration selection are adopted to control the ill-posed problem of identification problem. In this paper, both the numerical examples and experimental verification prove that the ice load identification model owe the advantages in aspect of identification precision, solution speed, and stability.
Key words: ice load of ship; load identification; linear shape function; Conjugate Gradient Least Squares

关键词

船体冰载荷 / 载荷识别 / 线性形函数 / 共轭梯度最小二乘法

Key words

ice load of ship / load identification / linear shape function / Conjugate Gradient Least Squares

引用本文

导出引用
孔帅1,田于逵1,崔洪宇2,季顺迎2. 面向船体结构动冰载荷监测的线性形函数识别方法研究[J]. 振动与冲击, 2022, 41(14): 226-232
KONG Shuai1, TIAN Yukui1, CUI Hongyu2, JI Shunying2. Identification method using the combination of linear shape functions for the monitoring of dynamic ice load on ship structures[J]. Journal of Vibration and Shock, 2022, 41(14): 226-232

参考文献

[1]. Ebinger C. K., Zambetakis E. The geopolitics of Arctic melt[J]. International Affairs, 2009, 85(6): 1215-1232.
[2]. 国务院新闻办.《中国的北极政策》白皮书[Z]. 北京:中华人民共和国国务院新闻办公室, 2018.
The State Council Information Office.《China’s Arctic Policy》Write Book[Z]. BeiJing: Information Office of the State Council of the People's Republic of China, 2018.
[3]. 吴 刚,王燕舞,张东江.中国极地破冰船总体与结构设计技术现状与展望[J].中国造船,2020, 61(1):194-203.
WU Gang, WANG Yan-wu, ZHANG Dong-jiang. Research status and prospect of general and structural design technology of polar icebreaker in China[J]. Ship Building of China, 2020, 61(1):194-203.
[4]. Myland D., Ehlers S. Influence of bow design on ice breaking resistance[J]. Ocean Engineering, 2016, 119: 217-232.
[5]. Kõrgesaar M., Kujala P., Romanoff J. Load carrying capacity of ice-strengthened frames under idealized ice load and boundary conditions[J]. Marine Structures, 2018, 58: 18-30.
[6]. Suyuthi A., Leira B.J., Riska K. Fatigue damage of ship hulls due to local ice-induced stresses[J]. Applied Ocean Research, 2013, 42: 87-104.
[7]. Jordaan I., Bruce J., Masterson D., et al. Local ice pressures for multiyear ice accounting for exposure[J]. Cold Regions Science and Technology, 2010, 61(2-3): 97-106.
[8]. Shamaei F., Bergstrom M., Li F., et al. Local pressures for ships in ice: Probabilistic analysis of full-scale line-load data[J]. Marine Structures, 2020. 102822.
[9]. Suominen M., Kujala P., Romanoff J., et al. Influence of load length on short-term ice load statistics in full-scale[J]. Marine Structures, 2017, 52: 153-172.
[10]. Kjerstad Ø.K., Lu W., Skjetne R., et al. A method for real-time estimation of full-scale global ice loads on floating structures[J]. Cold Regions Science and Technology, 2018, 156: 44-60.
[11]. Kong S., Cui H.Y., Tian Y.K., et al. Identification of Ice Loads on Shell Structure of ice-going vessel with Green Kernel and Regularization Method[J]. Marine Structures. 2020.102820.
[12]. Fenz D., Younan A., Piercey G., et al. Field measurement of the reduction in local pressure from ice management[J]. Cold Regions Science and Technology, 2018, 156: 75-87.
[13]. 贺文宇,汪洋,任伟新. 基于小波形函数的动态载荷识别方法[J]. 振动与冲击,2019, 38(8): 9-14.
HE Wen-yu, WANG Yang, REN Wei-xin. Identification of dynamic force based on wavelet shape functions[J]. Journal of Vibration and Shock, 2019, 38(8): 9-14.
[14]. Wang L., Hou J.L, Qu J.P. Moving force identification based on load shape function for a long-span bridge structure[J]. Chinese Journal of Computational Mechanics 29(2):153-158+177.
[15]. Li K., Liu J., Han X., et al. Distributed dynamic load identification based on shape function method and polynomial selection technique[J]. Inverse Problems in Science and Engineering, 2017, 25(9):1323-1342.
[16]. 崔洪宇,胡大士,孔 帅,等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究. 中国造船, 2020, 61(1): 109-119.
CUI Hong-yu, HU Da-shi, KONG Shuai, et al. Study on Inversion of Ice Load for Xue Long Icebreaker Based on Regularization Method[J].Ship Building of China, 2020, 61(1): 109-119.
[17]. 孔帅,崔洪宇,季顺迎. 船体结构冰载荷反演方法及试验验证[J]. 中国机械工程, 2020, 31(3): 281-288.
KONG Shuai, CUI Hong-yu, JI Shun-ying. Ice load identification model of ship structure and experimental verification[J]. China Mechanical Engineering, 2020, 31(3): 281-288.
[18]. 池林,刘杰,姜潮. 时域内动态载荷识别的径向基形函数法[J].中国机械工程,2013, 24(3):285-289.
CHI Lin, LIU Jie, JIANG Chao. Radial basis shape function method for identification of dynamic load in time domain[J]. China Mechanical Engineering, 2014, 24(3): 285-289.
[19]. Tikhonov A.N., Goncharsky A.V., Stepanov V.V., et al. Numerical methods for the solution of ill-posed problems[M]. Moscow:Springer Science & Business Media, 1995.
[20]. 卢立勤,乔百杰,张兴武,等. 共轭梯度最小二乘迭代正则化算法在冲击载荷识别中的应用[J]. 振动与冲击, 2016, 35(22):176-182.
LU Li-qin, QIAO Bai-jie, ZHANG Xing-wu, et al. Application of conjugate gradient least squares iteration regularization algorithm in impact load identification[J]. Journal of Vibration and Shock, 2016, 35(22):176:182.
[21]. 缪炳荣,周凤,陈翔宇,等. 利用核函数和不同正则化方法的结构载荷识别混合技术研究[J]. 振动工程学报, 2018, 31(4):553-560.
MIAO Bing-rong, ZHOU Feng, CHEN Xiang, et al. Research of the structure load identification hybrid technology using kernel function and different regularization method[J]. Journal of Vibration Engineering, 2018, 31(4):553-560.
[22]. Hanke M. Conjugate gradient type methods for ill-posed problems[M]. London: CRC Press, 1995.
[23]. Paige C.C., Saunders M.A. LSQR: An algorithm for sparse linear equations and sparse least squares[J]. ACM Transactions on Mathematical Software (TOMS), 1982, 8(1): 43-71.
[24]. Chang X.W., Paige C.C., Titley-Péloquin D. Stopping criteria for the iterative solution of linear least squares problems[J]. SIAM Journal on Matrix Analysis and Applications, 2009, 31(2): 831-852.
[25]. 彭凡,马庆镇,肖健, 等. 自由运行结构动态载荷识别的格林函数法[J]. 动力学与控制学报, 2016, 14(1):75-79.
PENG Fan, MA Qing-zhen, XIAO Jian, et al. Green kernel function approach of load identification for free structures with overall translation [J]. Journal of Dynamics and Control, 2016, 14(1):75-79.
[26]. 韩旭,刘杰,李伟杰,等. 时域内多源动态载荷的一种计算反求技术[J]. 力学学报, 2009, 41(4): 595-602.
LIU Jie, LIU Jie, LI Wei-jie, et al. A computational inverse technique for reconstruction of multisource loads in time domain[J]. Chinese Journal of Theoretical and Applied Mechanics. 2009, 41(4): 595-602.
[27]. Kim H., Daley C., Kim H. Evaluation of large structural grillages subjected to ice loads in experimental and numerical analysis[J]. Marine Structures, 2018, 61: 467-502.
[28]. 孔帅. 船体结构冰载荷的离散元分析及监测识别方法[D]. 大连: 大连理工大学, 2020.
Kong Shuai. Discrete element analysis and identification methods of ice loads on ship structure[D]. DaLian: DaLian University of Technology, 2020.
[29]. Ritch R., Frederking R., Johnston M., et al. Local ice pressures measured on a strain gauge panel during the CCGS Terry Fox bergy bit impact study[J]. Cold Regions Science and Technology, 2008, 52(1): 29-49.

PDF(1381 KB)

431

Accesses

0

Citation

Detail

段落导航
相关文章

/