海水海洋骨料混凝土霍普金森压杆动态力学性能试验研究

徐金俊1,2,唐月月1,陈宇良3,陈宗平4,5

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 233-242.

PDF(2077 KB)
PDF(2077 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 233-242.
论文

海水海洋骨料混凝土霍普金森压杆动态力学性能试验研究

  • 徐金俊1,2,唐月月1,陈宇良3,陈宗平4,5
作者信息 +

Split-Hopkinson pressure bar tests on dynamic properties of concrete made of seawater and marine aggregates

  • XU Jinjun1,2, TANG Yueyue1, CHEN Yuliang3, CHEN Zongping4,5
Author information +
文章历史 +

摘要

为研究海水海洋骨料混凝土动态受压力学行为,采用155 mm大直径分离式霍普金森压杆(separated Hopkinson pressure bar ,SHPB)试验装置开展了15个淡水河砂碎石混凝土、15个海水海砂碎石混凝土和15个海水海砂珊瑚混凝土在不同冲击气压下的动力荷载试验研究,并分别与各自混凝土(累计9个)在静力荷载作用下的受压性能进行了对比分析。研究结果表明:淡水河砂碎石混凝土和海水海砂碎石混凝土的破坏面在于骨料与水泥浆体的界面区,而海水海砂珊瑚混凝土的薄弱点为珊瑚骨料本身;淡水河砂碎石混凝土和海水海洋骨料混凝土的破碎程度、峰值应力、峰值应变、能量吸收密度、动态强度放大系数均随应变率的增加而增大;在同级应变率下,海水海砂珊瑚混凝土的动态峰值应力最大,海水海砂碎石混凝土的次之,淡水河砂碎石混凝土的最小,而应变延性系数正相反;海水海砂珊瑚混凝土的动态峰值应变和能量吸收密度比海水海砂碎石混凝土和淡水河砂碎石混凝土的大;基于欧洲混凝土规范CEB的预测曲线基本能反映海水海洋骨料混凝土动态强度放大系数与应变率之间的关系,而相应的吻合程度也体现了海水海砂珊瑚混凝土比淡水河砂碎石混凝土和海水海砂碎石混凝土的应变率效应更加显著。
关键词:海洋骨料;混凝土;静力性能;动力性能;能量吸收密度;应变率

Abstract

In order to investigate the dynamic properties of seawater-marine aggregate concrete, separated Hopkinson pressure bar(SHPB) test facility was employed to conduct the dynamic loading test on fifteen fresh water-river sand-crushed stone concrete specimens, fifteen seawater-sea sand-crushed stone concrete specimens and fifteen seawater-sea sand-coral concrete specimens under different impact pressures. For comparison, each concrete in total nine specimens was tested under static loading. The results show that the failure plane of flesh water-river sand-crushed stone concrete and seawater-sea sand-crushed stone concrete exhibits in the interface region of aggregate-cement mortar, while the weak point of seawater-sea sand-coral concrete is the coral aggregate itself. The damage degree, peak stress, peak strain, energy absorption density, dynamic strength increase factor of fresh water-river sand-crushed stone concrete and seawater-marine aggregate concrete increase with an increase of strain rate. For the same strain rate, seawater-sea sand-coral concrete have the largest dynamic peak stress and fresh water-river sand-crushed stone concrete have the smallest one, while the strain ductility coefficient is the opposite. The dynamic peak strain and energy absorption density of seawater-sea sand-coral concrete are higher than those of fresh water-river sand-crushed stone concrete and seawater-sea sand-crushed stone concrete. Comite Euro-International du Beton (CEB)-based predictive curve can basically reflect the relationship between dynamic strength increase factor and strain rate of seawater-marine aggregate concrete, and the corresponding degree of coincidence demonstrates that the strain rate effect of seawater-sea sand-coral concrete is more significant than that of fresh water-river sand-crushed stone concrete and seawater-sea sand-crushed stone concrete.
Keywords:marine aggregates; concrete; static properties; dynamic properties; energy absorption density; strain rate

关键词

海洋骨料 / 混凝土 / 静力性能 / 动力性能 / 能量吸收密度 / 应变率

Key words

marine aggregates / concrete / static properties / dynamic properties / energy absorption density / strain rate

引用本文

导出引用
徐金俊1,2,唐月月1,陈宇良3,陈宗平4,5. 海水海洋骨料混凝土霍普金森压杆动态力学性能试验研究[J]. 振动与冲击, 2022, 41(14): 233-242
XU Jinjun1,2, TANG Yueyue1, CHEN Yuliang3, CHEN Zongping4,5. Split-Hopkinson pressure bar tests on dynamic properties of concrete made of seawater and marine aggregates[J]. Journal of Vibration and Shock, 2022, 41(14): 233-242

参考文献

[1] 刘伟,谢友均,董必钦,邢锋. 海砂特性及海砂混凝土力学性能的研究[J]. 硅酸盐通报,2014,33(1):15-22. (Liu Wei, Xie Youjun, Dong Bijun, Xing Feng. Study on Characteristics of Dredged Marine Sand and the Mechanical Properties of concrete Made with Dredged Marine Sand [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 15-22. (in Chinese))
[2] 卢予奇,赵羽习. 海砂颗粒形态评价与海拌混凝土性能研究[J]. 海洋工程,2020,38(6):124-130. (Lu Yuqi, Zhao Xiyu. Morphological evaluation of sea sand particles and basic properties of marine-mixed concrete [J]. Ocean Engineering, 2020, 38(6): 124-130. (in Chinese))
[3] 黄一杰,何绪家,颜雪雪,邓芃,王崇革. 海砂再生混凝土受压力学性能试验研究与分析[J]. 混凝土,2019,(4):19-23. (Huang Yijie, He Xujia, Yan Xuexue, Deng Wei, Wang Chongge. Experim ental study and analysis on sea sand recycled concrete underaxialcom pression [J]. Concrete, 2019, (4): 19-23. (in Chinese))
[4] 陈宗平,张亚旗,姚如胜,陈宇良. 海砂混凝土单轴受压应力-应变全曲线试验研究[J]. 硅酸盐通报,2019,38(12):3934-3940+3945. (Chen Zongping, Zhang Yaqi, Yao Rusheng, Chen Yuliang. Experimental Study on Complete Stress-Strain Curve of Sea Sand Concrete Behavior under Uniaxial [J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3934-3940+3945. (in Chinese))
[5] Etxeberria M, Fernandez J M, Limeira J. Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: Case study [J]. Construction and Building Materials, 2016, 113: 586-595.
[6] Shayan A., Xu A., Chirgwin G., Morris H. Effects of seawater on AAR expansion of concrete [J]. Cement and Concrete Research, 2009, 40(4): 563-568.
[7] 臧朝会,杨树桐,金亮亮. 海水海砂混凝土双K断裂参数的确定[J]. 海洋工程,2019,37(4):142-150. (Zang Chaohui, Yang Shutong, Jin Liangliang. Determination of double K fracture parameters of seawater sea sand concrete [J]. Ocean Engineering, 2019, 37(4): 142-150. (in Chinese))
[8] 李林. 珊瑚混凝土的基本特性研究[D]. 南宁:广西大学,2012. (Li Lin. Research on basic characteristics of coral concrete [D]. Nanning: Guangxi University, 2012. (in Chinese))
[9] 王以贵. 珊瑚混凝土在港工中应用的可行性[J]. 水运工程,1988,(9):46-48. (Wang Yigui, Feasibility of coral concrete application in port work [J]. Water Sport Engineering, 1988, (9): 46-48. (in Chinese))
[10] 韦灼彬,李仲欣,沈锦林. 珊瑚混凝土性能影响因素及早期力学性质研究[J]. 工业建筑,2017,47(3):130-136. (Wei Zhubin, Li Zhongxin, Shen Jinlin. Research on the influencince factors of performance of coral concrete and its early mechanical proper [J]. Industrial Construction, 2017, 47(3): 130-136. (in Chinese))
[11] 糜人杰,余红发,麻海燕,达波,袁银峰,张小平,朱海威,窦雪梅. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程,2016,34(4):47-54.(Mi Renjie, Yu Hongfa, Ma Haiyan, Dabo, Yuan Yinfeng, Zhang Xiaoping, Zhu Haiwei, Du Xuemei. Study on the mechanical property of coral concrete [J]. Ocean Engineering, 2016, 34(4): 47-54. (in Chinese))
[12] 马林建,陈欣星,赵跃堂,刘基程. 全珊瑚混凝土的疲劳特性[J]. 硅酸盐学报,2019,47(2):214-219. (Ma Linjian, Chen Xinxing, Zhao Yuetang, Liu Jicheng. Fatigue behavior of coral aggregate concrete [J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 214-219. (in Chinese))
[13] 马林建,刘基程,张宁,王磊,段力群,李治中. 循环荷载作用下珊瑚混凝土的阻尼特性[J]. 硅酸盐学报,2020,48(11):1765-1770. (Ma Linjian, Liu Jicheng, Zhang Ning, Wang Lei, Duan Liqun, Li Zhizhong. Damping characteristics of coral concrete under cyclic loading [J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1765-1770. (in Chinese))
[14] 苏晨,麻海燕,余红发,岳承军,张亚栋,梅其泉,沙海洋,刘婷. 不同珊瑚骨料对珊瑚混凝土力学性能的影响[J]. 硅酸盐学报,2020,48(11):1771-1780. (Su Chen, Ma Haiyan, Yu Hongfa, Yue Chengjun, Zhang Yadong, Mei Qiquan, Sha Haiyang, Liu Ting. Effect of different coral aggregates on mechanical properties of coral concrete [J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1771-1780. (in Chinese))
[15] Arumugam R.A., Ramamurthy K. Study of compressive strength characteristics of coral aggregate concrete [J]. Magazine of Concrete Research, 1996, 48(176): 141-148.
[16] 岳承军,余红发,麻海燕,章艳,梅其泉,达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报,2019,33(16): 2697-2703. (Yue Chengjun, Yu Hongfa, Ma Haiyan, Zhang Yan, Mei Qiquan, Da Bo. Experiment study on dynamic impact properties of coral aggregate seawater concrete [J]. Materials Review, 2019, 33(16): 2697-2703. (in Chinese))
[17] 岳承军,余红发,麻海燕,梅其泉,刘婷. 珊瑚混凝土冲击压缩性能试验研究与数值模拟[J]. 建筑材料学报,http://kns.cnki.net/kcms/detail/31.1764.tu.20200530.0929.010.html. (Yue Chengjun, Yu Hongfa, Ma Haiyan, Mei Qiquan, Liu Ting. Experimental study and simulation of impact compression of coral aggregate seawater concrete [J]. Journal of Building Materials, http://kns.cnki.net/kcms/Detail/31.1764.tu.20200530.0929.010.html (in Chinese))
[18] Ma L., Li Z., Liu J., et al. Mechanical properties of coral concrete subjected to uniaxial dynamic compression [J]. Construction and Building Materials, 2019, 199: 244-255.
[19] 吴家文,马林建,孔新立,罗棕木,段力群. 冲击荷载下全珊瑚混凝土动力特性[J]. 建筑材料学报,2020,23(3):581-588. (Wu Jiawen, Ma Linjian, Kong Xinli, Luo Zongmu, Duan Liqun. Dynamic characteristics of coral concrete under impact load [J]. Journal of Building Materials, 2020, 23(3): 581-588. (in Chinese))
[20] American Society for Testing and Materials. Standard practice for the preparation of substitute ocean water [S]. ASTM International, 2013.
[21] GB/T 50081-2019. 混凝土物理力学性能试验方法标准[S]. 北京:中国建筑工业出版社,2019.(GB/T 50081-2019. Standard for test methods of concrete physical and mechanical properties [S]. China Architecture & Building Press, 2019. (in Chinese))
[22] 卢芳云,陈容,赵鹏铎,等. 霍普金森杆实验技术[M]. 北京:科学出版社,2013. (Lu Fangyun, Chen Rong, Zhao Pengduo, etc. Hopkinson bar technology [M]. Beijing: Science Press, 2013. (in Chinese))
[23] 任亮,何瑜,王凯. 基于整形器的UHPC材料SHPB试验数值模拟与分析[J]. 振动与冲击, 2019, 38(21):44-52. (REN Liang, HE Yu, WANG Kai. Numerical simulation and analysis of SHPB test for UHPC material based on shaper. Journal of Vibration and Shock, 2019, 38(21): 44-52. (in Chinese))
[24] Xiong B.B., Demartino C., Xiao Y. High-strain rate compressive behavior of CFRP confined concrete: Large diameter SHPB tests [J]. Construction and Building Materials, 2019, 201: 484-501.
[25] 王晓燕,卢芳云,林玉亮. SHPB实验中端面摩擦效应研究[J]. 爆炸与冲击,2006,26(2):134-139. (Wang Xiaoyan, Lu Fangyun, Lin Yuliang. Study on interfacial friction effect in the SHPB tests [J]. experiments. Explosion and Shock Waves, 2006, 26(2): 134-139. (in Chinese))
[26] 达波,余红发,麻海燕,张亚栋,袁银峰,余强,谭永山,糜人杰. 全珊瑚海水混凝土单轴受压应力-应变全曲线试验研究[J]. 建筑结构学报,2017,38(1):144-151. (Da Bo, Yu Hongfa, Ma Haiyan, Zhang Yadong, Yuan Yinfeng, Yu Qiang, Tan Yongshan, Mi Renjie. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniax [J]. Journal of Building Structures, 2017, 38(1): 144-151. (in Chinese))
[27] Xiao Jianzhuang, Qiang Chengbing, Nanni Antonio, Zhang Kaijian. Use of sea-sand and seawater in concrete construction: Current status and future opportunities [J]. Construction and Building Materials, 2017, 155: 1101-1111.
[28] CEB. Concrete structures under impact and impulsive loading [S]. CEB Bulletin CEB Bulletin d’information, Vol. 187. 691 Committee Euro-International du Beton Lausanne, France, 1998.
[29] Ma L, Li Z, Wang M, Wei H., Fan P. Effects of size and loading rate on the mechanical properties of single coral particles [J]. Powder Technology, 2019, 342: 961-971.

PDF(2077 KB)

916

Accesses

0

Citation

Detail

段落导航
相关文章

/