空气阻尼对网孔式弹性垫板动力学特性的影响研究

白彦博,和振兴,贠剑峰,张鹏,王志璇

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 24-32.

PDF(1880 KB)
PDF(1880 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 24-32.
论文

空气阻尼对网孔式弹性垫板动力学特性的影响研究

  • 白彦博,和振兴,贠剑峰,张鹏,王志璇
作者信息 +

Effect of air damping on the dynamic characteristics of a mesh type elastic backing plate

  • BAI Yanbo,HE Zhenxing,YUN Jianfeng,ZHANG Peng,WANG Zhixuan
Author information +
文章历史 +

摘要

轨道交通列车走行基础采用了大量弹性垫板用于降低振动的影响。为了提高弹性垫板的阻尼,消耗更多的振动能量,提出一种空气阻尼网孔式弹性垫板。该垫板利用不同材料的弹性差异,在其弹性单元的空腔中形成主气室和附气室,两气室之间用节流孔联通。在列车动荷载作用下,两气室中的气体在节流孔中往复流动产生阻尼作用。研究表明,节流孔孔径和气室体积比是影响弹性垫板动力学性能的关键参数,减小节流孔孔径和气室体积比可以降低弹性垫板的刚度并增大其阻尼。空气阻尼网孔式弹性垫板的刚度和阻尼可以通过改变节流孔孔径和气室体积比灵活调整,其性能优于普通网孔式弹性垫板和填充高阻尼材料的网孔式弹性垫板。该垫板采用空气阻尼替代网孔中填充的阻尼材料,可以节省大量的生产成本。
关键词:空气阻尼;弹性垫板;节流孔孔径;气室体积比;阻尼比

Abstract

A large number of elastic pads are used to reduce the impact of vibration in the foundation of rail transit trains. In order to improve the damping of the elastic pad and consume more vibration energy, an air damping mesh type elastic pad is proposed. The backing plate uses the difference in elasticity of different materials to form a main air chamber and an auxiliary air chamber in the cavity of the elastic unit, and the two air chambers are communicated with a throttle hole. Under the action of the train's dynamic load, the gas in the two gas chambers reciprocately flow in the orifice to produce a damping effect. Studies have shown that the aperture of the orifice and the volume ratio of the air chamber are the key parameters that affect the dynamic performance of the elastic pad. Reducing the ratio of the aperture of the orifice and the volume of the air chamber can reduce the stiffness of the elastic pad and increase its damping. The stiffness and damping of the air damping mesh elastic pad can be flexibly adjusted by changing the throttle hole diameter and the air chamber volume ratio, and its performance is better than ordinary mesh elastic pads and mesh elastic pads filled with high damping materials. The backing plate uses air damping to replace the damping material filled in the mesh, which can save a lot of production costs.
Keywords: air damping; elastic backing plate; orifice aperture; air chamber volume ratio; damping ratio

关键词

空气阻尼 / 弹性垫板 / 节流孔孔径 / 气室体积比 / 阻尼比

Key words

air damping / elastic backing plate / orifice aperture / air chamber volume ratio / damping ratio

引用本文

导出引用
白彦博,和振兴,贠剑峰,张鹏,王志璇. 空气阻尼对网孔式弹性垫板动力学特性的影响研究[J]. 振动与冲击, 2022, 41(14): 24-32
BAI Yanbo,HE Zhenxing,YUN Jianfeng,ZHANG Peng,WANG Zhixuan. Effect of air damping on the dynamic characteristics of a mesh type elastic backing plate[J]. Journal of Vibration and Shock, 2022, 41(14): 24-32

参考文献

[1] 韦凯, 张攀, 王平. 扣件胶垫刚度的幅频变对轮轨耦合系统随机频响特征的影响[J]. 工程力学, 2017, 34(04):   108-115.
Wei Kai, Zhang Pan, Wang Ping. Influence of amplitude-and frequency-dependent stiffness of rail pads on the frequency-domain random vibration of vehicle-track coupled system [J]. Engineering Mechanics, 2017, 34(04): 108-115.
[2] 韦凯, 杨帆, 王平, 等. 扣件胶垫刚度频变的车/轨耦合系统随机振动虚拟辛分析[J]. 工程力学, 2016, 33(09): 123-130+137.
Wei Kai, Yang Fan, Wang Ping, et al. Symplectic random vibration analysis of vehicle-track coupled system considering frequency-dependent stiffness of rail pads [J]. Engineering Mechanics, 2016, 33(09): 123-130+137
[3] KAEWUNRUEN S, REMENNIKOV A M. An Alternative Rail Pad Tester for Measuring Dynamic Properties of Rail Pads Under Large Preloads[J]. Experimental Mechanics, 2008, 48(1): 55-64.
[4] 孔凡兵.地铁轨道减振细分级和隔振理论研究[J].铁道学报,2019,41(12):132-137.
Kong Fanbing. Study on detailed classification of subway rail vibration and vibration isolation theory [J]. Journal of the China Railway Society, 2019, 41(12): 132-137.
[5] 李明航, 马蒙, 刘维宁, 等. 轨道预载对梯式轨道系统减振效果影响试验研究[J]. 铁道学报, 2020, 42(05): 113-119.
Li Minghang, Ma Meng, Liu Weining, et al. Experimental study on the influence of track preload on the vibration reduction effect of ladder track system[J]. Journal of the China Railway Society, 2020, 42(05): 113-119.
[6] 李粮余. 基于声子晶体理论进行轨道系统减振效果研究[J]. 铁道工程学报, 2020, 37(12): 64-69.
Li Liangyu. Experimental study of preload effect on vibration reduction of floating ladder track [J]. Journal of Railway Engineering Society, 2020, 37(12): 64-69.
[7] 辛涛, 张琦, 高亮, 等. 高速铁路CRTSⅢ型板式无砟轨道减振垫层动力影响及结构优化[J]. 中国铁道科学, 2016, 37(05): 1-7.
Xin Tao, Zhang Qi, Gao Liang, et al. Dynamic effects and structure optimization of damping layers of CRTSⅢ slab ballastless track for high speed railway [J]. China Railway Science, 2016, 37(05): 1- 7.
[8] 谭诗宇, 蔡小培, 崔日新, 等. 环境敏感区桥上有砟轨道铺设道砟垫的减振效果[J]. 振动与冲击, 2017, 36(10): 38-44.
Tan Shiyu, Cai Xiaopei, Cui Rixin, et al. Vibration reduction effect of laying ballast mats under ballast tracks on bridge in environmental sensitive areas [J]. Vibration and Shock, 2017, 36(10): 38-44.
[9] 崔旭浩, 肖宏. 道砟垫有砟道床力学特性离散元分析[J]. 振动与冲击, 2020, 39(19): 141-148+181.
Cui Xuhao, Xiao Hong. DE analysis for mechanical characteristics of ballast bed with ballast mats [J]. Journal of Vibration and Shock, 2020, 39(19): 141-148+181.
[10] OMODAKA A, KUMAKURA T, KONISHI T. Maintenance Reduction by the Development of Resilient Sleepers for Ballasted Track with Optimal Under-sleeper Pads[J].  Procedia Cirp, 2017, 59:53-56.
[11] 罗震. 高速铁路无砟轨道结构受力及轮轨动力作用分析[D]. 西南交通大学, 2008.
[12] 和振兴, 石广田, 翟婉明. 一种轨道交通高阻尼位移量可调弹性垫板[P]. 中国, U, CN201820499714.5. 2018-11-27.
He Zhenxing, Shi Guangtian, Zhai Wanming. A high damping displacement adjustable elastic backing plate for rail transit[P]. China, U, CN201820499714.5. 2018-11-27.
[13] 翟志浩, 和振兴, 李斌, 等. 轨下新型网孔式弹性垫板力学性能影响研究[J]. 铁道标准设计, 2020, 64(04): 32-37.
Zhai Zhihao, He Zhenxing, Li Bin, et al. Study on the influence of mechanical properties of new mesh-type elastic under-rail pad [J]. Railway Standard Design, 2020, 64(04): 32-37.
[14] 和振兴, 翟婉明, 石广田, 等. 一种空气阻尼减振垫及复合阻尼减振器[P]. 中国, U, CN201921939891.1. 2020-09-25.
He Zhenxing, Zhai Wanming, Shi Guangtian, et al. An air damping cushion and composite damping shock absorber [P]. China, U, CN201921939891.1. 2020-09-25.
[15] 陈俊杰, 殷智宏, 郭孔辉, 等. 节流孔式空气阻尼系统建模及参数影响分析[J]. 振动与冲击, 2018, 37(16): 241-248.
Chen Junjie, Yin Zhihong, Guo Konghui, et al. Modelling and effect analysis of design parameters for orifice-type air damping systems [J]. Journal of Vibration and Shock, 2018, 37(16): 241-248.
[16] GB/T 15168-2013, 振动与冲击隔离器静, 动态性能测试方法[S].北京: 中国标准出版社,2013-12
[17] 王斌仓, 石广田, 和振兴, 等. 填充高阻尼材料增强网孔式橡胶弹性垫板的性能[J]. 铁道建筑, 2019, 59(09): 136-141.
Wang Bincang, Shi Guangtian, He Zhenxing, et al. Influence of high damping filling material on performances of mesh rubber elastic pad [J]. Railway Engineering, 2019, 59(09): 136-141.
[18] 刘晶波. 结构动力学[M]. 北京: 机械工业出版社, 2005: 1.
[19] BERG M. A Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics, 1998, 30(3-4): 197-212.
[20] SJOBERG M. Rubber Isolator-Measurements and Modelling using Fractional Derivatives and Friction[J]. SAE Transactions, 2000, 109(2): 873-884.
[21] 赵峰, 和振兴, 石广田, 等.网孔式弹性垫板动静刚度特性研究[J]. 机械强度, 2020, 42(05): 1243-1249.
Zhao Feng, He Zhenxing, Shi Guangtian, et al. Research on dynamic and static stiffness characteristics of mesh elastic pad [J]. Journal of Mechanical Strength, 2020, 42(05): 1243-1249.

PDF(1880 KB)

Accesses

Citation

Detail

段落导航
相关文章

/