反复一维冲击下钙质砂动力特性SHPB试验研究

戴国亮1,2,欧阳浩然1,2,秦伟3,朱文波1,2,龚维明1,2,张程锋1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 264-270.

PDF(1545 KB)
PDF(1545 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 264-270.
论文

反复一维冲击下钙质砂动力特性SHPB试验研究

  • 戴国亮1,2,欧阳浩然1,2,秦伟3,朱文波1,2,龚维明1,2,张程锋1,2
作者信息 +

SHPB tests on the dynamic characteristics of calcareous sand under repeated one-dimensional impact loading

  • DAI Guoliang1,2, OUYANG Haoran1,2, QIN Wei3, ZHU Wenbo1,2, GONG Weiming1,2, ZHANG Chengfeng1,2
Author information +
文章历史 +

摘要

南海岛礁建设桩基工程面临钙质砂地层问题,利用改进的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)试验装置研究钙质砂在反复冲击荷载作用下的动力特性。共进行28次反复一维冲击试验,得到钙质砂和石英砂的应力-应变、一维压缩特性以及吸能效率曲线,以探讨反复一维冲击荷载作用下冲击次数、含水率和相对密实度等因素对两种砂样动态力学响应的影响。结果表明,钙质砂由于颗粒形状和矿物组成的不同,其动态表观模量(动刚度)在首次冲击以及反复冲击多次后都约为石英砂的10 %;随着反复冲击的进行,两种砂样不断密实,表现为刚度增大、可压缩性减弱;首次冲击下钙质砂和石英砂的屈服应力分别约为3.20 MPa和9.33 MPa,此后颗粒开始大量破碎,压缩指数分别约为0.87和0.41,反复冲击后两种砂样的屈服应力分别增加到6.14 MPa和12.54 MPa;钙质砂的吸能效率高于石英砂,不同含水率和不同相对密实度钙质砂样吸能效率在多次冲击后趋于接近。
关键词:钙质砂;分离式霍普金森压杆(SHPB)试验;冲击次数;应力-应变关系;一维压缩特性;吸能特性

Abstract

In order to solve the problem of calcareous sand layer in the construction of pile foundation in the South China Sea, a modified split Hopkinson pressure bar (SHPB) apparatus was used to investigate the dynamic characteristics of calcareous sand under repeated impact loading. A total of 28 repeated one-dimensional impact tests were conducted to obtain the stress-strain, one-dimensional compression and energy absorption efficiency curves of calcareous sand and silica sand, so as to explore the influence of impact times, moisture content and relative density on the dynamic characteristics of the two types sand specimens under repeated one-dimensional impact loading. The test results show that the dynamic apparent modulus (dynamic stiffness) of calcareous sand is approximately 10 % of that for silica sand after the first impact and repeated impacts due to the difference in particle shape and mineral compositions; with repeated impacts, both sand specimens continue to compact, showing an increase in stiffness and a decrease in compressibility; the yield stresses of calcareous sand and silica sand under the first impact are about 3.20 MPa and 9.33 MPa respectively, and then a large number of particles begin to break, and the compression index is about 0.87 and 0.41 respectively. After repeated impact, the yield stress of the two kinds of sand samples increases to 6.14 MPa and 12.54 MPa respectively; the energy absorption efficiency of calcareous sand is higher than that of silica sand, and the energy absorption efficiency of calcareous sand specimens with different moisture content and relative density tends to be similar after repeated impact.
Keywords: calcareous sand; split Hopkinson pressure bar (SHPB) test; impact times; stress-strain relationship; 1D compression behavior; energy absorption

关键词

钙质砂 / 分离式霍普金森压杆(SHPB)试验 / 冲击次数 / 应力-应变关系 / 一维压缩特性 / 吸能特性

Key words

calcareous sand / split Hopkinson pressure bar (SHPB) test / impact times / stress-strain relationship / 1D compression behavior / energy absorption

引用本文

导出引用
戴国亮1,2,欧阳浩然1,2,秦伟3,朱文波1,2,龚维明1,2,张程锋1,2. 反复一维冲击下钙质砂动力特性SHPB试验研究[J]. 振动与冲击, 2022, 41(14): 264-270
DAI Guoliang1,2, OUYANG Haoran1,2, QIN Wei3, ZHU Wenbo1,2, GONG Weiming1,2, ZHANG Chengfeng1,2. SHPB tests on the dynamic characteristics of calcareous sand under repeated one-dimensional impact loading[J]. Journal of Vibration and Shock, 2022, 41(14): 264-270

参考文献

[1] 魏久淇, 王明洋, 邱艳宇, 赵章泳. 钙质砂动态力学特性试验研究[J]. 振动与冲击, 2018, 37(24): 7-12.
WEI Jiu-qi, WANG Ming-yang, QIU Yan-yu, ZHAO Zhang-yong. Impact compressive response of calcareous sand [J]. Journal of Vibration and shock, 2018, 37(24): 7-12.
[2] 魏久淇, 吕亚茹, 刘国权, 张磊, 李磊. 钙质砂一维冲击响应及吸能特性试验[J]. 岩土力学, 2019, 40(01): 191-198+206.
WEI Jiu-qi, LV Ya-ru, LIU Guo-quan, ZHANG Lei, LI lei. One-dimensional impact responses and energy absorption of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(01): 191-198+206.
[3] Lv YR, Li F, Liu YW, Fan PX, Wang M. Comparative study of coral sand and silica sand in creep under general stress states [J]. Canadian Geotechnical Journal, 2017, 54(11): 1601-1611.
[4] Smith DA, Cheung KF. Empirical relationships for grain size parameters of calcareous sand on Oahu, Hawaii [J]. Journal of Coastal Research, 2002; 18(1): 82-93.
[5] Lade PV, Nam J, Liggio Jr CD. Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand [J]. Journal of Geotechnical Engineering, 2010, 136(3): 500-509.
[6] KOLSKY H. An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading [J]. Proceedings of the Physical Society: Section B, 1949, 62(11): 676-700.
[7] DAVIES R M. A Critical Study of the Hopkinson Pressure Bar[J]. Philosophical Transactions of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1948, 240(821): 375-457.
[8] 王礼立, 胡时胜. 钛合金TB-2在高应变率下的动态应力应变关系[J].爆炸与冲击, 1985, 5(1): 9-15.
WANG Li-li, HU Shi-sheng. The Dynamic Stress-strain Relation of Ti-alloy TB-2 Under High Strain-rates [J]. Explosion and Shock Waves, 1985, 5(1): 9-15.
[9] 王宇涛, 刘殿书, 李胜林, 等. 基于75 mm SHPB系统的高温混凝土动态性能研究[J]. 振动与冲击, 2014, 33 (17) :12-17
WANG Yu-tao, LIU Dian-shu, LI Sheng-lin, et al. Dynamic performance of concrete based on a 75 mm SHPB system under high temperature[J]. Journal of Vibration and Shock, 2014, 33 (17): 12-17.
[10] 解北京, 王新艳, 吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击, 2017, 36(21): 117-124.
XIE Bei-jing, WANG Xin-yan, LV Ping-yang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage [J]. Journal of Vibration and Shock, 2017, 36(21): 117-124.
[11] 胡时胜, 王礼立, 宋力,等. Hopkinson压杆技术在中国的发展回顾[J].爆炸与冲击, 2014, 34(6): 641-657.
HU Shi-sheng, WANG Li-li, SONG Li, et al. Review of Development of Hopkinson Pressure Bar Technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641-657.
[12] FLETCHER E, POOROOSHASB H. Response of a Clay Sample to Low Magnitude Loads Applied at High Rate[C]//Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials. Albuquerque, New Mexico, 1967: 781-86.
[13] Frew DJ, Forrestal MJ, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93-106.
[14] Song B, Chen W, Luk V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777-785.
[15] Huang J, Xu S, Hu S. Effects of grain size and gradation on the dynamic responses of quartz sands [J]. International Journal of Impact Engineering, 2013, 59: 1-10.
[16] 高常辉, 马芹永, 马冬冬. 主动围压作用下水泥粉质黏土SHPB试验与分析[J]. 振动与冲击, 2018, 37(14): 162-167.
GAO Chang-hui, MA Qin-yong, MA Dong-dong. SHPB test and analysis on cemented silty clay under confining pressure conditions [J]. Journal of Vibration and Shock, 2018, 37(14): 162-167.
[17] MARTIN B E, KABIR M E, CHEN W. Undrained High-pressure and High Strain-rate Response of Dry Sand Under Triaxial Loading[J]. International Journal of Impact Engineering, 2013, 54: 51-63.
[18] SELIG E , LADD R. Preparing test specimens using undercompaction [J]. Geotechnical Testing Journal, 1978, 1(1): 16–23.
[19] W.A. Charlie, C.A. Ross, S.J. Pierce. Split-Hopkinson pressure bar testing of unsaturated sand [J]. Geotechnical Testing Journal,  1990, 13(4): 192–300.
[20] Huang X, Qi S, Xia K, Zheng H, Zheng B. Propagation of high amplitude stress waves through a filled artificial joint: an experimental study [J]. Journal of Applied Geophysics, 2016b, 130: 1-7.
[21] Rossi, P. Influence of cracking in the presence of free water on the mechanical behaviour of concrete [J]. Magazine of Concrete Research, 2015, 43(154): 53-57.
[22] Miltz J, Gruenbaum G. Evaluation of Cushioning Properties of Plastic Foams From Compressive Measurements[J]. Polymer Engineering Science, 1981, 21(15): 1010—1014

PDF(1545 KB)

258

Accesses

0

Citation

Detail

段落导航
相关文章

/