冲击载荷下两种应变率作用方式煤岩能量演化及分形特征研究

王磊1,邹鹏1,焦振华1,刘怀谦1,2,陈礼鹏1,王炯3,王真真4

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 280-289.

PDF(1984 KB)
PDF(1984 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 280-289.
论文

冲击载荷下两种应变率作用方式煤岩能量演化及分形特征研究

  • 王磊1,邹鹏1,焦振华1,刘怀谦1,2,陈礼鹏1,王炯3,王真真4
作者信息 +

Energy evolution and fracture characteristics of coal and rock under impact load with two kinds of strain rate action modes

  • WANG Lei1,ZOU Peng1,JIAO Zhenhua1,LIU Huaiqian1,2,CHEN Lipeng1,WANG Jiong3,WANG Zhenzhen4
Author information +
文章历史 +

摘要

为探究不同驱动气压(0.3~0.5MPa)和试样长度(15~50mm)下煤岩能量演化及分形特征,利用Φ50mm分离式霍普金森压杆(split Hopkinson pressure bar ,SHPB)系统进行了动态压缩试验,明确了两种方式下能量演化参数随应变率的变化规律,基于分形理论探讨了破碎试样的分形特征,并揭示了不同应变率下煤岩破碎与能量演化的内在联系。结果表明:应变率随驱动气压升高呈线性增加,随试样长度增加呈幂函数降低;不同驱动气压和试样长度下的破碎耗能和破碎耗能密度随应变率升高分别呈指数和线性形式增加,且推断存在某一应变率,使两种方式破碎耗能密度的率敏感性趋于一致;气压改变和试样长度改变下的平均粒径随应变率升高均呈幂函数形式降低,而分形维数分别呈线性和指数形式增加;试验过程中随着应变率增加,试样破碎程度加剧,分形维数增大,且作用方式作为影响分形维数的重要因素,对结果起到了关键作用。研究结果可为采场合理布置施工参数提供一定参照。
关键词:冲击载荷;分离式霍普金森压杆(SHPB);应变率;能量演化;分形维数

Abstract

In order to explore the energy evolution and fractal characteristics of coal and rock under different driving pressure (0.3 ~ 0.5MPa) and sample length (15 ~ 50mm), The dynamic compression tests is carried out by using split Hopkinson pressure bar (SHPB) equipment which with a diameter of 50mm, and the variation law of energy evolution ones with strain rate under the two modes is clarified. The fractal characteristics of broken samples are discussed based on fractal theory, and the internal relationship between coal and rock crushing and energy evolution under different strain rates is revealed. The results show that the strain rate increases linearly with the increase of driving pressure and decreases as a power function with the increase of sample length; The crushing energy consumption and crushing energy density under different driving pressure and sample length increase exponentially and linearly with the increase of strain rate, and it is inferred that there is a certain strain rate, which makes the rate sensitivity of crushing energy density of the two methods tend to be the consistent; The average particle size decreases with increasing strain rate as a power function, while the fractal dimension increases linearly and exponentially with increasing strain rate as pressure changes and sample length changes; During the test, with the increase of strain rate, the fragmentation degree of the sample intensifies and the fractal dimension increases and the action mode, as an important factor affecting the fractal dimension, plays a key role in the results. The research results can provide some reference for the reasonable layout of stope construction parameters.
Key words: impact load;split Hopkinson pressure bar (SHPB);strain rate;energy evolution;fractal dimension

关键词

冲击载荷 / 分离式霍普金森压杆(SHPB) / 应变率 / 能量演化 / 分形维数

Key words

impact load / split Hopkinson pressure bar (SHPB) / strain rate / energy evolution / fractal dimension

引用本文

导出引用
王磊1,邹鹏1,焦振华1,刘怀谦1,2,陈礼鹏1,王炯3,王真真4. 冲击载荷下两种应变率作用方式煤岩能量演化及分形特征研究[J]. 振动与冲击, 2022, 41(14): 280-289
WANG Lei1,ZOU Peng1,JIAO Zhenhua1,LIU Huaiqian1,2,CHEN Lipeng1,WANG Jiong3,WANG Zhenzhen4. Energy evolution and fracture characteristics of coal and rock under impact load with two kinds of strain rate action modes[J]. Journal of Vibration and Shock, 2022, 41(14): 280-289

参考文献

[1] 王登科,刘淑敏,魏建平,等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报,2017, 34(03):594-600.
WANG Dengke,LIU Shumin,WEI Jianping,et al. The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining & Safety Engineering,2017, 34(03):594-600.
[2] 李明,茅献彪,曹丽丽,等. 高应变率下煤力学特性试验研究[J]. 采矿与安全工程学报,2015, 32(02):317-324.
LI Ming,MAO Xianbiao,CAO Lili,et al. Experimental study on mechanical properties of coal under high strain rate[J]. Journal of Mining & Safety Engineering,2015, 32(02):317-324.
[3] 单仁亮,程瑞强,高文蛟. 云驾岭煤矿无烟煤的动态本构模型研究[J]. 岩石力学与工程学报,2006(11):2258-2263.
SHAN Renliang,CHENG Ruiqiang,GAO Wenjiao. Study on dynamic constitutive model of anthracite of Yunjialing coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,2006(11):2258-2263.
[4] Kolsky H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading[J]. Proceedings of the Physical Society. Section B,1949,62(11):676-700.
[5] 李夕兵,宫凤强,高科,等. 一维动静组合加载下岩石冲击破坏试验研究[J]. 岩石力学与工程学报,2010, 29(02):251-260.
LI Xibing,GONG Fengqiang,GAO Ke,et al. Test study of impact failure of rock subjected to onedimensional coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2010, 29(02):251-260.
[6] 刘晓辉,张茹,刘建锋. 不同应变率下煤岩冲击动力试验研究[J]. 煤炭学报,2012, 37(09):1528-1534.
LIU Xiaohui,ZHANG Ru,LIU Jianfeng. Dynamic test study of coal rock under different strain rates[J]. Journal of China Coal Society,2012, 37(09):1528-1534.
[7] 刘文震. 煤在冲击载荷下的动态力学特性试验研究[D]. 安徽理工大学,2011.
LIU Wenzhen. Experimental study on dynamic mechanical properties of the coal under impact load[D]. Anhui University of Science and Technology,2011.
[8] 宫凤强,李夕兵,饶秋华,等. 岩石SHPB试验中确定试样尺寸的参考方法[J]. 振动与冲击,2013, 32(17):24-28.
GONG Fengqiang,LI Xibing,RAO Qiuhua,et al. Reference method for determining sample size in SHPB tests of rock materials[J]. Journal of Vibration and Shock,2013, 32(17):24-28.
[9] 洪亮,李夕兵,马春德,等. 岩石动态强度及其应变率灵敏性的尺寸效应研究[J]. 岩石力学与工程学报,2008, 27(03):526-533.
HONG Liang,LI Xibing,MA Chunde,et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering,2008, 27(03):526-533.
[10] 李地元,肖鹏,谢涛,等. 动静态压缩下岩石试样的长径比效应研究[J]. 实验力学,2018, 33(01):93-100.
LI Diyuan,XIAO Peng,XIE Tao,et al. On the effect of length to diameter ratio of rock specimen subjected to dynamic and static compression[J]. Journal of Experimental Mechanics,2018, 33(01):93-100.
[11] 杜晶. 不同长径比下岩石冲击动力学特性研究[D]. 中南大学,2011.
DU Jing. Size effect on the dynamic mechanical properties under impact loads of rock[D]. Central South University,2011.
[12] 平琦,张号,苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究[J]. 岩石力学与工程学报,2018, 37(S2):3891-3897.
PING Qi,ZHANG Hao,SU Haipeng. Study on dynamic compression mechanical properties of limestone with  different lengths[J]. Chinese Journal of Rock Mechanics and Engineering,2018, 37(S2):3891-3897.
[13] Li Q, Li J, Wang Z, et al. Study on Coal Pillar Size Design Based on Non-integral Contact Structure of Coal and Rock Under Static and Dynamic Loads[J]. Frontiers in Materials, 2021: 370:1-16.(新增)
[14] Han Z, Li D, Zhou T, et al. Experimental study of stress wave propagation and energy characteristics across rock specimens containing cemented mortar joint with various thicknesses[J]. International Journal of Rock Mechanics and Mining Sciences,2020,131:1-11.
[15] Li D, Han Z, Sun X, et al. Dynamic Mechanical Properties and Fracturing Behavior of Marble Specimens Containing Single and Double Flaws in SHPB Tests[J]. Rock Mechanics and Rock Engineering,2019,52(6):1623-1643.
[16] Liang W, Zhao J, Li Y, et al. Research on the Fractal Characteristics and Energy Dissipation of Basalt Fiber Reinforced Concrete after Exposure to Elevated Temperatures under Impact Loading[J]. Materials,2020,13(8):1-14.
[17] 宗琦,柏杨,朱玉飞. 煤矿泥岩和砂岩冲击破碎与耗能特性试验[J]. 科学技术与工程,2018, 18(11):156-161.
Zong Qi,Bai Yang,Zhu Yufei. Experimental Experiment of impact crushing and energy dissipation characteristics of mudstone and sandstone in coal mine[J]. Science Technology and Engineering,2018, 18(11):156-161.
[18] Tyler S W, Wheatcraft S W. Fractal Scaling of Soil Particle‐Size Distributions: Analysis and Limitations[J]. Soil Science Society of America Journal, 1992, 56(2):362-369.
[19] Tyler S W, Wheatcraft S W. Application of Fractal Mathematics to Soil Water Retention Estimation[J]. Soil Science Society of America Journal, 1989, 53(4):987-996.
[20] 何满潮,杨国兴,苗金丽,等. 岩爆实验碎屑分类及其研究方法[J]. 岩石力学与工程学报,2009, 28(08):1521-1529.
HE Manchao,YANG Guoxing,MIAO Jinli,et al. Classification and research methods of rockburst experimental fragments[J]. Chinese Journal of Rock Mechanics and Engineering,2009, 28(08):1521-1529.
[21] 谢和平,高峰,周宏伟,等. 岩石断裂和破碎的分形研究[J]. 防灾减灾工程学报,2003(04):1-9.
XIE Heping,GAO Feng,ZHOU Hongwei,et al. Fractal fracture and fragmentation in rocks[J]. Journal of Disaster Prevention and Mitigation Engineering,2003(04):1-9.
[22] 黎立云,徐志强,谢和平,等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报,2011, 36(12):2007-2011.
LI Liyun,XU Zhiqiang,XIE Heping. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society,2011, 36(12):2007-2011.
[23] 许金余,刘石. 大理岩冲击加载试验碎块的分形特征分析[J]. 岩土力学,2012, 33(11):3225-3229.
XU Jinyu,LIU Shi. Research on fractal characteristics of marble fragments subjected to impact loading[J]. Rock and Soil Mechanics,2012, 33(11):3225-3229.
[24] 李成杰,徐颖,张宇婷,等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报,2019, 38(11):2231-2241.
LI Chengjie,XU Ying,ZHANG Yuting,et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2019, 38(11):2231-2241.
[25] 武仁杰,李海波,李晓锋,等. 冲击载荷作用下层状岩石破碎能耗及块度特征[J]. 煤炭学报,2020, 45(03):1053-1060.
WU Renjie,LI Haibo,LI Xiaofeng,et al. Broken energy dissipation and fragmentation characteristics of layered rock un-der impact loading[J]. Journal of China Coal Society,2020, 45(03):1053-1060.
[26] 纪杰杰,李洪涛,吴发名,等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击,2020, 39(13):176-183.
JI Jiejie,LI Hongtao,WU Faming,et al. Fractal characteristics of rock fragmentation under impact load [J]. Journal of Vibration and Shock,2020, 39(13):176-183.
[27] Tang J, Li S, Qin G, et al. Experiments on Mechanical Response and Energy Dissipation Behavior of Rockburst-Prone Coal Samples Under Impact Loading[J]. Shock and Vibration, 2021, 2021(2):1-10.(新增)
[28] Wenqing Z, Chaomin M, Denke X, et al. Energy Action Mechanism of Coal and Gas Outburst Induced by Rockburst[J]. Shock and Vibration,2021,2021:1-14.(特刊)(新增)
[29] 张文清. 冲击载荷下松软煤力学特性及对煤与瓦斯突出的影响[D]. 安徽理工大学,2015.
ZHANG Wenqing. Study on mechanical property of soft coal under impact load and its effect to coal and gas outburst[D]. Anhui University of Science and Technology,2015.
[30] Xue Y, Liu X, Zhao R, et al. Investigation on Triaxial Dynamic Model Based on the Energy Theory of Bedding Coal Rock under Triaxial Impact Compression[J]. Shock and Vibration, 2021, 2021:1-15(新增)
[31] Qiupeng Y, Guangxiang X, Lei W, et al. Experimental Study on Stress Uniformity and Deformation Behavior of Coals with Different Length-to-Diameter Ratios under Dynamic Compression[J]. Shock and Vibration, 2021, 2021:1-12.(特刊有卷无期)
[32] Ulusay R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014[M]. Springer, Cham.(此引用项为专著,无卷号)
[33] 王晓燕,卢芳云,林玉亮. SHPB实验中端面摩擦效应研究[J]. 爆炸与冲击,2006(02):134-139.
WANG Xiaoyan,LU Fangyun,LIN Yuliang. Study on interfacial friction effect in the SHPB tests[J]. Explosion and Shock Waves,2006(02):134-139.
[34] 卢芳云,陈荣,林玉堂,等. 霍普金森杆实验技术[M]. 北京:科学出版社,2013.
LU Fangyun,CHEN Rong,LIN Yutang,et al. Hopkinson Bar Techniques[M]..Beijing:China Science Publishing & Media Lid,2013.
[35] 中国岩石力学与工程学会. T/CSRME 001–2019岩石动力学特性试验规程[S] .团体标准, 2019.
Chinese Society for Rock Mechanices & Engineering. T/CSRME 001–2019 Technical specification for testing method of rock dynamic properties[S]. Group standard, 2019.
[36] 洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 中南大学,2008.
HONG Liang. Size effect on strength and energy dissipation in fracture of rock under impact load[D]. Central South University,2008.
[37] 张蓉蓉,经来旺. SHPB试验中高低温作用后深部砂岩破碎程度与能量耗散关系分析[J]. 煤炭学报,2018, 43(07):1884-1892.
ZHANG Rongrong,JING Laiwang. Analysis on the fragment and energy dissipation of deep sandstone after high / low temperature treatment in SHPB tests[J]. Journal of China Coal Society,2018, 43(07):1884-1892.(新增)

PDF(1984 KB)

888

Accesses

0

Citation

Detail

段落导航
相关文章

/