非均匀速度分布对地铁曲线区段钢轨磨耗演变的影响

高雅1,时瑾1,焦彬洋2,杨飞3

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 41-49.

PDF(2579 KB)
PDF(2579 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 41-49.
论文

非均匀速度分布对地铁曲线区段钢轨磨耗演变的影响

  • 高雅1,时瑾1,焦彬洋2,杨飞3
作者信息 +

Influence of non-uniform passing speed distribution on rail wear evolution in the curved section of Metro

  • GAO Ya1,SHI Jin1,JIAO Binyang2,YANG Fei3
Author information +
文章历史 +

摘要

基于三角概率分布研究了速度分布的不均匀性对曲线轨道钢轨磨耗演变的影响。采用Archard材料磨耗模型,结合基于虚拟渗透的非Hertz滚动接触理论进行钢轨磨耗预测仿真;建立曲线区段车辆与轨道动力相互作用模型,对不同速度条件下的钢轨磨耗按权重进行累积计算,结合B-spline函数对磨耗后的钢轨型面进行平滑更新,对比分析了地铁B型车以单一速度和非均匀速度通过曲线钢弹簧浮置板区段时的钢轨磨耗的演变情况。结果表明:钢轨磨耗在圆曲线上较大,磨耗光带基本平行于轨道纵向,磨耗深度沿轨道纵向分布不均匀;钢轨磨耗范围随钢轨型面更新次数的增加逐渐增加,磨耗速率随钢轨型面更新次数的增加先增加后减小;非均匀速度通过有效提高了钢轨磨耗分布沿轨道纵向的均匀性;采用非均匀速度通过和优化钢轨型面10次更新时与采用单一速度通过和磨耗钢轨型面相比车辆累计通过数量增加了近一倍,显著减缓了曲线段钢轨磨耗速率,极大地增加了车辆运行稳定性;在地铁实际运营中可通过在高峰和低峰时段采取非均匀速度控制模式,在一定程度上减缓钢轨磨耗速率。
关键词:地铁;非均匀速度分布;磨耗预测;钢弹簧浮置板;动力响应;曲线通过

Abstract

Based on the trigonometric probability distribution, the influence of the uniformity of speed distribution on the rail wear evolution of curved track is studied. The Archard material wear model and non-Hertz rolling contact theory based on virtual penetration are used to predict rail wear; a vehicle and track dynamic interaction model on curve is established to calculate the rail wear under different running speeds by weight accumulation, and the worn rail profile is smoothed by B-spline function. The evolution of rail wear of Metro B-type vehicles passing through the curved steel spring floating plate section with single speed and non-uniform speed is compared and analyzed. Results show that the rail wear is larger on the circular curve, and the rail wear band is basically straight along the longitudinal direction of the track, while the wear depth is unevenly distributed; with the increase of rail profile updating times, the range of rail wear region increases gradually, and the rail wear speed first increases and then decreases; the non-uniform speed can effectively improve the rail wear uniformity and slow down the rail wear rate. Compared with single speed and worn rail profile, the cumulative number of vehicles passing is nearly doubled when non-uniform speed passing and optimized rail profile are used after updating for 10 times, which significantly slows down the rail wear rate of curve section and greatly increases the vehicle running stability; In the actual operation of metro, the rail wear rate can be reduced to a certain extent by adopting the non-uniform speed control mode in the peak and low peak periods.
Keywords: metro; non-uniform speed distribution; wear prediction; steel-spring floating slab; dynamic response; curve negotiation

关键词

地铁 / 非均匀速度分布 / 磨耗预测 / 钢弹簧浮置板 / 动力响应 / 曲线通过

Key words

metro / non-uniform speed distribution / wear prediction / steel-spring floating slab / dynamic response / curve negotiation

引用本文

导出引用
高雅1,时瑾1,焦彬洋2,杨飞3. 非均匀速度分布对地铁曲线区段钢轨磨耗演变的影响[J]. 振动与冲击, 2022, 41(14): 41-49
GAO Ya1,SHI Jin1,JIAO Binyang2,YANG Fei3. Influence of non-uniform passing speed distribution on rail wear evolution in the curved section of Metro[J]. Journal of Vibration and Shock, 2022, 41(14): 41-49

参考文献

[1] 王璞,王树国. 重载铁路钢轨磨耗分布发展计算模型及影响因素研究[J]. 振动与冲击. 2018, 37(24): 72-79.
Wang Pu, Wang Shuguo. A study on the calculation model and influence factors of rail wear distribution for heavy haul railway[J]. Journal of Vibration and Shock. 2018, 37(24): 72-79.
[2] 梁喜仁, 陶功权, 陆文教,等. 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报, 2019, 55(2).
Liang Renxi, Tao Gongquan, Lu Wenjiao, et al. Study on the Rail Rolling Contact Fatigue of Subway[J]. Journal of Mechanical Engineering, 2019, 55(2).
[3] 王忆佳, 曾京, 罗仁,等. 高速车辆车轮磨耗与轮轨接触几关系的研究[J]. 振动与冲击, 2014, 33(7):45-50.
Wang Yijia, Zeng Jing, Luo Ren, et al. Wheel profile wear and wheel/rail contact geometric relation for a high-speed train[J]. Journal of Vibration and Shock. 2014, 33(7):45-50.
[4] 昌超, 肖乾, 王亚朋. 高速列车车轮型面磨耗对轨道、桥梁振动特性影响分析[J]. 振动与冲击, 2019, 38(13):185-196.
Chang Chao, Xiao Qian, Wang Yapeng. Effects of high-speed train’ s wheel wear on vibration characteristics of track and bridge [J]. Journal of Vibration and Shock. 2019, 38(13):185-196.
[5] Fries R H, Vila C G. Analytical Methods for Wheel and Rail Wear Prediction[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 1985, 14:1-3, 51-54.
[6] Pearce T G , Sherratt N D . Prediction of wheel profile wear[J]. Wear, 1991, 144(1-2):343-351.
[7] Ward A, Lewis R, Dwyer-Joyce R S. Incorporating a railway wheel wear model into multi-body simulations of wheelset dynamics[M]. Tribology Series, Dowson D, Priest M, Dalmaz G, et al, Elsevier, 2003: 41, 367-376.
[8] Braghin F, Lewis R, Dwyer-Joyce R S, et al. A mathematical model to predict railway wheel profile evolution due to wear[J]. Wear. 2006, 261(11-12): 1253-1264.
[9] Enblom R, Berg M. Impact of non-elliptic contact modelling in wheel wear simulation[J]. Wear. 2008, 265(9-10): 1532-1541.
[10] 王璞,高亮,蔡小培. 重载铁路钢轨磨耗演变过程的数值模拟[J]. 铁道学报. 2014, 36(10): 70-75.
Wang Pu, Gao Liang, Cai Xiaopei. Numerical Simulation of Rail Wear Evolution of Heavy‐hual Railways[J]. Journal of the China Railway Society. 2014, 36(10): 70-75.
[11] 孙宇,翟婉明. 钢轨磨耗演变预测模型研究[J]. 铁道学报. 2017, 39(08): 1-9.
Sun Y , Zhai W . A Prediction Model for Rail Wear Evolution[J]. Journal of the China Railway Society, 2017, 39(8):1-9.
[12] 王少锋,冯青松,罗信伟,等. 非椭圆接触下地铁小半径曲线外轨全寿命侧磨发展规律[J]. 中国铁道科学. 2019, 40(01): 24-30.
Wang Shaofeng, Feng Qingsong, Luo Xinwei. Development Law of Life Cycle Side Wear on Outer Rail of Metro with Small Radius Curve under Non-Elliptical Contact[J]. China Railway Science. 2019, 40(01): 24-30.
[13] Gao Y, Shi J, Lu C. A Two-Step Composite Time Integration Scheme for Vehicle-Track Interaction Analysis considering Contact Separation[J]. Shock and Vibration. 2019, 2019: 1-13.
[14] Shi J, Gao Y, Long X, et al. Optimizing rail profiles to improve metro vehicle-rail dynamic performance considering worn wheel profiles and curved tracks[J]. Structural and Multidisciplinary Optimization. 2021, 63(1): 419-438.
[15] Piotrowski J, Kik W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle system dynamics. 2008, 46(1-2): 27-48.
[16] Li X, Jin X, Wen Z, et al. A new integrated model to predict wheel profile evolution due to wear[J]. Wear. 2011, 271(1-2): 227-237.
[17] Meehan P A , Batten R D , Bellette P A . The effect of non-uniform train speed distribution on rail corrugation growth in curves/corners[J]. Wear, 2016:27-37.

PDF(2579 KB)

247

Accesses

0

Citation

Detail

段落导航
相关文章

/