综合斜率和三次样条的EMD端点效应抑制方法

梁黎明1,2,王茂芝1,2,徐文皙1,2,谭梦婷1,2,张明月1,2,王尚坤1,2

振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 70-76.

PDF(2037 KB)
PDF(2037 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (14) : 70-76.
论文

综合斜率和三次样条的EMD端点效应抑制方法

  • 梁黎明1,2,王茂芝1,2,徐文皙1,2,谭梦婷1,2,张明月1,2,王尚坤1,2
作者信息 +

Restriction of the end effect of EMD by utilizing slope and cubic spline based methods

  • LIANG Liming1,2,WANG Maozhi1,2,XU Wenxi1,2,TAN Mengting1,2,ZHANG Mingyue1,2,WANG Shangkun1,2
Author information +
文章历史 +

摘要

端点效应会严重影响经验模态分解(empirical mode decomposition, EMD) 提取本征模态函数(intrinsic mode function,IMF) 的效果。针对基于三次样条端点延拓算法(cubic spline based method, CSBM) 在设置延拓点坐标位置时缺乏对信号趋势进行考量的缺陷,结合改进斜率延拓方法( improved slope based method, ISBM) 的设计思想,提出一种综合斜率变化率和三次样条的EMD端点延拓方法。新方法的主要创新点在于利用斜率变化率度量信号变化趋势,并基于信号和包络趋势来设置延拓点坐标信息。通过选取四组不同类型模拟信号以及两组实际工程应用信号,利用正交指数、均方误差和能量误差三个度量指标对算法性能进行评价,实验结果表明,所提方法的性能在整体上优于CSBM和ISBM方法。
关键词:经验模态分解;端点效应;斜率;三次样条;延拓

Abstract

The end effect will influence the results of empirical mode decomposition (EMD) during the processing of intrinsic mode function (IMF) extraction. In this paper, a new end condition method combined with the idea of improved slope based method (ISBM) and cubic spline based method (CSBM) is proposed. The novelty of this new method lies in that the slope ratio is defined as the tendency of the signal, further to set the coordinates of the extended points combined with the tendency of the signal and its envelope, which can overcome the deficiency of CSBM when setting the values of the extended points. Four different analog signals, two signals from engineering applications, and three performance criteria, i.e., orthogonal index, mean square error and energy error, are selected to evaluate the new method compared with ISBM and CSBM. Experimental results indicate that, overall, the performance of the proposed method is better than that of CSBM and ISBM.
Key words: empirical mode decomposition; the end effect; slope; cubic spline; extension

关键词

经验模态分解 / 端点效应 / 斜率 / 三次样条 / 延拓

Key words

empirical mode decomposition / the end effect / slope / cubic spline / extension

引用本文

导出引用
梁黎明1,2,王茂芝1,2,徐文皙1,2,谭梦婷1,2,张明月1,2,王尚坤1,2. 综合斜率和三次样条的EMD端点效应抑制方法[J]. 振动与冲击, 2022, 41(14): 70-76
LIANG Liming1,2,WANG Maozhi1,2,XU Wenxi1,2,TAN Mengting1,2,ZHANG Mingyue1,2,WANG Shangkun1,2. Restriction of the end effect of EMD by utilizing slope and cubic spline based methods[J]. Journal of Vibration and Shock, 2022, 41(14): 70-76

参考文献

[1] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995.
[2] Huang N E, Wu M L, Qu W, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis [J]. Applied Stochastic Models in Business and Industry, 2003, 19(3):245-268.
[3] Rilling G, Flandrin P, Goncalves P. On empirical mode decomposition and its algorithms [J]. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, NSIP-03, 2003, 1-5.
[4] 王红军, 付瑶. 基于多项式拟合的EMD端点效应处理方法研究[J] . 机械设计与制造, 2010, 10: 197-199.
Wang Hongjun, Fu Yao. Study of polynomial fitting technique for EMD end effect [J]. Machinery Design & Manufacture, 2010, 10: 197-199.
[5] Huang D J, Zhao J P, Su J L. Practical implementation of Hilbert-Huang Transform algorithm [J]. Acta Oceanologica Sinica, 2003, 22 (1): 1-14.
[6] Datig M, Schlurmann T. Performance and limitations of the Hilbert-Huang transformation (HHT) with an application to irregular water waves [J]. Ocean Engineering, 2004, 31: 1783–1834.
[7] Wu F J, Qu L S. An improved method for restraining the end effect in empirical mode decomposition and its applications to the fault diagnosis of large rotating machinery [J]. Journal of Sound and Vibration, 2008, 314: 586-602.
[8] Xu W X, Chen S H, Wang M Z, et al. Eliminating the end effect of empirical mode decomposition using a cubic spline based method [J]. Digital Signal Processing, 2021, 110: 102936.
[9] 蔡艳平, 李艾华, 石林锁, 等. EMD端点效应的改进型混沌延拓方法及其在机械故障诊断中的应用 [J]. 振动与冲击, 2011, 30(11): 46-52.
Cai Yanping, Li Aihua, Shi Linsuo, et al. Processing method for end effects of EMD based on improved chaos forecasting model and its application in machinery fault diagnosis [J]. Journal of Vibration and Shock, 2011, 30(11): 46-52.
[10] 杨剑锋, 石戈戈, 周天奇, 等. 基于自适应序贯相似性检测波形匹配延拓的 EMD 端点效应抑制 [J]. 振动与冲击, 2018, 37(18): 121-125.
Yang Jianfeng, Shi Gege, Zhou Tianqi, et al. Waveform extension method based on similarity sequential detection for the end effects reduction of EMD [J]. Journal of Vibration and Shock, 2018, 37(18): 121-125.
[11] Li H Y, Qin X Y, Zhao D, et al. An improved empirical mode decomposition method based on the cubic trigonometric B-spline interpolation algorithm [J]. Applied Mathematics and Computation., 2018, 332: 406-419.
[12] Li H Y, Li L, Zhao D. An improved EMD method with modified envelope algorithm based on C2 piecewise rational cubic spline interpolation for EMI signal decomposition [J]. Applied Mathematics and Computation, 2018, 335: 112-123.
[13] Huang N E. Introduction to the Hilbert–Huang transform and its related mathematical problems [J]. Hilbert-Huang transform and its applications, 2005, 5: 1-26.
[14] Tabrizi A A, Garibaldi L, Fasana A, et al. Automatic damage identification of roller bearings and effects of sifting stop criterion of IMFs [J]. Measurement, 2016, 93: 435-441.
[15] 薛毅. 数值分析与科学计算[M]. 科学出版社, 2011. 224-235.
Xue Yi. Numerical Analysis and Scientific Computation [M]. Science Press, 2011. 224-235.
[16] Yang L J, Yang Z H, Yang L H, et al. An improved envelope algorithm for eliminating undershoots [J]. Digital Signal Processing, 2013, 23(1): 401-411.
[17] Bearing Data Center Seeded Fault Test Data [EB/OL]. https://csegroups.case.edu/bearingdatacenter/pages/download-data-file. Accessed 2021.6.29.

PDF(2037 KB)

Accesses

Citation

Detail

段落导航
相关文章

/