针对双摆系统的混沌特性展开研究,首先将双摆从Hamilton系统近似为拟Hamilton系统,然后应用双自由度的Melnikov法预测拟Hamilton系统出现混沌运动的能量阈值,间接得到Hamilton系统混沌的必要条件。通过必要条件分析某些特定情况下系统的运动状态,结合不同参数下系统的最大Lyapunov指数图、分岔图、Poincaré截面图和时间历程图,验证了理论的正确性;同时也发现了因模型局限而产生的两种例外情况,并从理论角度对产生例外的原因进行分析。结果表明:能量阈值与摆长、摆重密切相关,而摆长、摆重又影响能量大小,意味着能量与系统混沌之间存在复杂的联系,而不是一般认为的低能级拟周期、高能级混沌。
关键词:双摆;Melnikov法;拟周期;混沌;最大Lyapunov指数
Abstract
The chaotic characteristics of the double pendulum system are studied. First, the double pendulum is approximated from the Hamilton system to the quasi-Hamilton system, and then the Melnikov method with two degrees of freedom is used to predict the energy threshold of the chaotic motion of the quasi-Hamilton system, and the necessary condition of chaos of Hamiltonian system is obtained indirectly. The necessary conditions are used to analyze the motion state of the system under some specific conditions, and combine the maximum Lyapunov exponent diagram, bifurcation diagram, Poincaré section and time series diagram of the system under different parameters to verify the correctness of the theory. At the same time, two kinds of exceptions due to the limitations of the model are found, and the reasons for the exceptions are analyzed theoretically. The results show that the energy threshold is closely related to the length and weight of the pendulum, and the length and weight of the pendulum also affect the energy, which means that there is a complex connection between energy and chaos in the system, instead of the low-energy quasi-period and high-level chaos generally considered.
Key words: double pendulum; Melnikov method; quasi-period; chaos; maximum Lyapunov exponent
关键词
双摆 /
Melnikov法 /
拟周期 /
混沌 /
最大Lyapunov指数
{{custom_keyword}} /
Key words
double pendulum /
Melnikov method /
quasi-period /
chaos /
maximum Lyapunov exponent
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Verduzco F, Alvarez J. Homoclinic chaos in 2-DOF robot manipulators driven by PD controllers [J].Nonlinear Dynamics. 2000, 21(2):157-171.
[2] 张红巧,田瑞兰,陈恩利,等. 参数激励下均质杆状双摆的周期稳定振动[J].振动与冲击, 2020, 39(16):231-235.
ZHANG Hong-qiao, TIAN Rui-lan, CHEN En-li, et al. Periodically stable vibration of homogeneous rod-shaped double pendulum under parametric excitation[J].Journal of Vibration and Shock,2020,39(16):231-235.
[3] StachoNils B, Stuart M, Eric W, et al. From the double pendulum model to full-body simulation: evolution of golf swing modeling [J].Sports Technology, 2020, 39(16):231-235.
[4] 彭海军,施博洋,王昕炜,等.考虑区间不确定性的双摆吊车运动轨迹规划[J].机械工程学报,2019,55(2):204–213. PENG Hai-jun, SHI Bo-yan, WANG Xin-wei, et al. Trajectory planning of double pendulum crane considering interval uncertainty[J].Journal of Mechanical Engineering,2019,55(2): 204–213.
[5] 江锦,李浩.平面双摆振动特性研究[J].中国造船,2010,51 (2):66 -72.
JIANG Jin, LI Hao. Analysis of pendulum oscillation [J]. Ship Building of China, 2010, 51 (S2):66 -72.
[6] 孙宁,张建一,吴易鸣,等.一种双摆效应桥式起重机光滑鲁棒控制方法[J].振动与冲击, 2019, 38(22):1-6.
SUN Ning, ZHANG Jian-yi, WU Yi-ming, et al. Continuous robust control for double-pendulum overhead cranes. [J].Journal of Vibration and Shock, 2019, 38(22):1-6.
[7] 李华.高速列车受电弓双摆模型及非线性动力学特性分析[D].天津大学机械工程学院,2012.
LI Hua. The double pendulum model and analysis of nonlinear dynamic characteristics of the pantograph of a high-speed train [D].Tianjin University Mechanical Engineering,2012.
[8] 王泽民,李天箭,陈时锦,等.直驱式A/C双摆角重型铣头力学分析[J].机械设计,2012,29(1):83–86.
WANG Zhe-ming ,LI Tian-jian, CHEN Shi-jing, et al. Mechanics analysis of direct drive A/C bi-rotary heavy milling head[J].Journal of Machine Design,2012,29(1):83–86.
[9] 高丙团,李军远,章啸.欠驱动旋转双摆系统的建模与仿真[J].计算机仿真,2010,27(11):363–366.
GAO Bin-tuan, LI Jun-yuan, ZHANG Xiao. Modeling and simulation of an underactuated double rotating pendulums system[J].Computer Simulation,2010,27(11):363–366.
[10] Ling F H, Xu R J. Non-lntegrability and chaos of a conservative compound pendulum[J].Applied Mathematics and Mechanics,1992,13(1):51–59.
[11] Martynyuk A A, Nikitina N V. The theory of motion of a double mathematical pendulum [J].International Applied Mechanics, 2000, 36(9):1252–1258.
[12] Stachowiak T, Okada T.A numerical analysis of chaos in the double pendulum[J].Chaos,Solitons&Fractals,2006,29(2):417– 422.
[13] Calvao A M, Penna T J P. The double pendulum: a numerical study [J].European Journal of Physics, 2015, 36 (4):1-24.
[14] Mukul K G, Kamal B, Arun K S. Mass and length dependent chaotic behavior of a double pendulum[J].IFAC Proceedings Volumes,2014,47(1):297–301.
[15] Yang X S. Topological horseshoes and computer assisted verification of chaotic dynamics [J]. International Journal of Bifurcation and Chaos, 2009,19(4):1127–1145
[16] Li Q D, Yang X S. A simple method for finding topological horseshoe [J]. International Journal of Bifurcation and Chaos, 2010, 20(2):467–478.
[17] 李清都,杨晓松.基于拓扑马蹄的混沌动力学研究进展[J].动力学与控制学报,2012,10(4):293–298.
YANG Xiao-song, LI Qing-du. Progresses on chaotic dynamics study with topological horseshoes [J].Journal of Dynamics and Control, 2012, 10(4):293–298.
[18] 李清都,唐宋. 三维超混沌映射拓扑马蹄寻找算法及应用[J]. 物理学报,2013,62(2):138–145.
LI Qing-du, TANG Song. Topological horseshoe and chaos in a double pendulum system [J].Acta Physica Sinica, 2013, 62(2): 138–145.
[19] 杨晓松,李清都,唐云.双摆系统的拓扑马蹄与混沌[J].力学季刊,2009,30(1):149–153.
YANG Xiao-song, LI Qing-du, Tang Yun. Topological horseshoe and chaos in a double pendulum system [J].Chinese Quarterly of Mechanics, 2009, 30(1):149–153.
[20] Holmes P J, Marsden J E. Horseshoes in perturbations of hamiltonian systems with two degrees of freedom [J]. Communications in Mathematical Physics, 1982, 82(4):523– 544.
[21] 李继彬,陈凤娟.混沌、Mel'nikov方法及新发展[M].北京:科学出版社,2012.
LI Ji-bin, CHEN Feng-juan. Chaos, Mel'nikov method and new development [M]. Beijing: Science Press, 2012.
[22] Lorenz E N. The essence of chaos [M]. Washington: the University of Washington Press, 1993.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}